
T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l of C o m p u t i n g
Computing 1, 13 Computing Drive, Singapore 117417

TRA5/13

Object Semantics for XML Keyword Search

Thuy Ngoc Le, Tok Wang Ling, H. V. Jagadish,
Chunbin Lin, and Jiaheng Lu

May 2013

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a journal
or for consideration by the commissioning organization. The report
represents the ideas of its author, and should not be taken as the
official views of the School or the University. Any discussion of the
content of the report should be sent to the author, at the address
shown on the cover.

OOI Beng Chin
Dean of School

1

Object Semantics for XML Keyword Search
Thuy Ngoc Le, Tok Wang Ling, H. V. Jagadish, Chunbin Lin and Jiaheng Lu

Abstract—We know that some XML elements correspond to objects (in the sense of object-orientation) and others do not. The
question we consider in this paper is what benefits we can derive from paying attention to such object semantics, particularly for
the problem of keyword queries. Keyword queries against XML data have been studied extensively in recent years, with several
lowest-common-ancestor based schemes proposed for this purpose, including SLCA, MLCA, VLCA, and ELCA. It is easy to
see that identifying objects can help each of these techniques return more meaningful answers than just the LCA node (or
subtree). It is more interesting to see that object semantics can also be used to benefit the search itself. For this purpose, we
introduce a novel nearest common object node semantics (NCON), which includes not just common ancestors but also common
descendants and referenced objects in evaluating a query. We have developed XComplete, a system for our NCON-based
approach, and used it in our extensive experimental evaluation. The experimental results show that our proposed approach
outperforms the existing LCA-based approaches in terms of both effectiveness and efficiency.

F

1 INTRODUCTION

Since XML has become a standard for information
exchange over the Internet, research on XML
keyword search has gained substantial interest.
Inspired by hierarchical structure of XML
data-centric documents, Guo et al. [4] and Schmidt
et al. [15] proposed LCA semantics (Lowest Common
Ancestor) for handling XML keyword queries. Many
extensions of the LCA semantics such as SLCA [17],
MLCA [9], ELCA [18] and VLCA [7] have been
proposed to improve effectiveness of XML keyword
search. The LCA-based approaches are widely
accepted and work well for several types of XML
keyword queries. However, they commonly suffer
from two major drawbacks including meaninglessness
of the answers and incompleteness of the answer set
as discussed in the following examples.

EXAMPLE 1 (Meaningless answer) Consider an XML
data tree as illustrated in Fig. 1 and its corresponding
XML schema in Fig. 2. For query {Clinton,
Kennedy}, an answer such as value node Clinton &
Kennedy is meaningless since it does not provide any
additional information about Clinton and Kennedy. A
meaningful answer should contain supplementary
information about Clinton and Kennedy such as the
subtree rooted at node Paper(1.1.1.1).

EXAMPLE 2 (The root as an LCA) In the same XML
data, suppose that a user wants to know the relationship
between professors Stanley and Tony, he/she can issue
query {Stanley, Tony} where Stanley and Tony

• Thuy Ngoc Le and Tok Wang Ling are with CS Department, School
of Computing, National University of Singapore.
E-mail: {ltngoc,lingtw}@comp.nus.edu.sg

• H. V. Jagadish is with Department of EECS, University of Michigan.
E-mail: jag@eecs.umich.edu

• Chunbin Lin and Jiaheng Lu are with Renmin University of China.
E-mail: {chunbinlin,jiahenglu}@ruc.edu.cn

are first names of professors. LCA-based approaches return
only the root as an LCA node for this query. However, the
whole document, the subtree rooted at the root, is surely
not a meaningful answer.

Object-orientation has been demonstrated as a
concept of value in many areas of computation, and
is widely used today. Even in the database field,
there was a movement towards object-oriented
databases and many object-oriented notions were
adopted by commercial relational databases, even
using the term Object Relational for a time. In the
same spirit, we propose to use object semantics in
XML keyword search, without making any major
modifications to XML itself.

An object is a real world entity and is reflected by
object nodes in XML data. An object is identified by
its object class and object ID (identifier). Thus, two
objects are the same if they belong to the same
object class and have the same object ID value. This
is all the object orientation we rely upon. Using just
this much, we show in this paper the benefits that
accrue to keyword search.

Based on object identification, we introduce a novel
semantics, called Nearest Common Object Node (NCON)
for XML keyword search. The NCON semantics has
two major features. First, an NCON must be an object
node. Second, an NCON can be either an LCOA (lowest
common object ancestor) or an HCOD (highest common
object descendant). Intuitively, an LCOA is similar to
an LCA [4], [7], [17]. However, an LCOA must be an
object node while an LCA can be an arbitrary node.
An HCOD is a common object descendant of a set
of keywords and it has no ancestor which is also a
common object descendant of that set of keywords.
The first feature of NCON ensures that an answer of
a keyword query is semantically meaningful for users.
The second feature integrates common descendants into
the answer set to return a more complete set of answers

2

12745

001

Name

Student
1.1.1

Paper
1.1.1.1

Bill
Kennedy

Professor
1.1

Paper
1.1.1.2

PID

002

Title

Clinton &
Kennedy

Student
1.1.2

PID

001

Stu_No

12745

Title

keyword
search

Paper
1.1.2.1

PID

001

Title

Clinton &
Kennedy

Root
1

Name

Student
1.2.1

Paper
1.2.1.1

Bill
Kennedy

Professor
1.2

Paper
1.2.1.2

PID

002

Title

Clinton &
Kennedy

Student
1.2.2

PID

Stu_No

Title

keyword
search

PID

001

Title

Clinton &
Kennedy

Paper
1.1.2.2

PID

003

Title

IR-based
approach

Name

John
Clinton

Stu_No

81433

Nam
e

Anna
White

Stu_No

00746

Name

Stanley
Brown

StaffID

sbrown

Name

Tony
Kennedy

StaffID

tken

Paper
1.2.2.1

Match Clinton& Kennedy
Match Kennedy
Match Clinton

Object node

Fig. 1. The original XML data

Student

Paper

Professor

NameStaffID

NameStu_No

TitlePID

Student

Professor

Paper

TitlePID

NameStu_No

NameStaffID

Student

Paper

Professor

NameStaffID

NameStu_No

TitlePID

Fig. 2. Original schema

to users. To the best of our knowledge, this is the first
attempt taking common descendants into account for
XML keyword search.

Let us revisit the motivating examples introduced
above and see how object-orientation may help.

EXAMPLE 3 (Example 1 Reprise) Paper(1.1.1.1)
is an object node that is the parent of the (non-object)
title node with value Clinton & Kennedy.
Returning the former is meaningful, whereas returning
the latter is meaningless. LCOA semantics will force us
up to the former, rather than stopping at the latter.

EXAMPLE 4 (Example 2 Reprise) We recognize that
nodes Student(1.1.1) and Student(1.2.1),
actually refer to the same student since they belong to the
same object class Student and have the same object ID
value 12745. This student is the common information
related to both Professor Stanley and Professor Tony,
i.e., the student co-supervised by both professors. HCOD
will find this student, and this will be the returned
answer. In contrast, LCA based approaches cannot detect
this common student because it appears as a descendant,
not as an ancestor. This is because LCA based approaches
do not consider the semantics of object and their query
results depend on the hierarchical structure of the XML
data while NCON based approach makes use semantics of
object and does not depend on the hierarchical structure
of objects in the XML data.

Incompleteness can be a problem for traditional
LCA techniques even when there is a meaningful
common ancestor as the following example shows:

EXAMPLE 5 (Incompleteness) Suppose a user issues
query {Bill, John} where keywords match two
students Student(1.1.1) and Student(1.1.2)
respectively. Is the answer Professor(1.1) (common
ancestor) returned by LCA-based approaches complete?
On careful examination, it is not. Paper(1.1.1.1)
and Paper(1.1.1.2) refer to the same object because
they belong to the same object class Paper and have the
same object ID value 001. Thus, the paper with PID
001, which is the common descendant of these student
nodes, should also be included in the answer set.
Intuitively, these students are not only supervised by the

same professor Stanley Brown, but also co-authors of
the same paper Paper 001. Therefore, not only common
ancestors (LCA nodes), but also common descendants
should be answer candidates for an XML keyword query.

A final answer obtained by LCA-based approaches
includes two parts: a returned node (LCA node) and
presentation of the answer, e.g., a subtree or a path.
Arguably, the presentation of an answer as a subtree
rooted at a returned node may contain common
descendants, but this presentation is too
cumbersome and contains a maze of irrelevant
information. This clouds the common descendants
and makes it hard to determine them.

In contrast, NCON semantics clearly identify both
common ancestors and common descendants, e.g.,
Professor(1.1), and Paper with object ID 001
in Example 5.

EXAMPLE 6 (Duplicated answer) Returning to the
query of Example 1, we see that there are several (four, to
be precise, in Fig. 1) occurrences of the searched value
{Clinton, Kennedy}. Even with NCON semantics,
each of these value nodes has a distinct parent object
node. However, we can see that all of these object nodes
refer to the same object because they belong to the same
object class Paper and have the same object ID value
001. As such, it is enough to return this object just once.

A common problem with XML is that objects are
duplicated in multiple places to achieve a tree
structure. Queries which match each of these
duplicate instances, as we saw in the example above,
often return overwhelmingly large result sets.
Exploiting object semantics, we are able to filter out
all such duplicated answers. Furthermore, to
improve user comprehension, we merge answers for
the same context to provide full comprehension
about the context that a query is translated.

To facilitate finding NCONs, we define an XML
object tree (O-tree) extracted from an XML data tree
by keeping only object nodes. Non-object nodes are
associated with their corresponding object nodes.
Fig. 3(a) shows the O-tree extracted from the XML
document in Fig. 1. To find HCODs, we also define
a reversed O-tree, whose paths from the root to leafs

3

Student
12745
1.1.1

Paper
001

1.1.1.1

Professor
sbrown

1.1

Paper
002

1.1.1.2

Student
81433
1.1.2

Paper
001

1.1.2.1

Root
1

Student
12745
1.2.1

Paper
001

1.2.1.1

Professor
tken
1.2

Paper
002

1.2.1.2

Student
00746
1.2.2

Paper
003

1.1.2.2

Paper
001

1.2.2.1

(a) The O-tree extracted from the data in Fig.1

Student
12745
1.1.1

Professor
sbrown
1.1.1.1

Paper
001
1.1

Professor
tken

1.1.1.2

Student
81433
1.1.2

Professor
sbrown
1.1.2.1

Root
1

Student
12745
1.2.1

Professor
sbrown
1.2.1.1

Paper
002
1.2

Professor
tken

1.2.1.2

Student
81433
1.3.1

Professor
tken

1.1.3.1

Professor
sbrown
1.3.1.1

Student
00746
1.1.3

Paper
003
1.3

(b) The reversed O-tree of the O-tree in Fig. 3(a)

Fig. 3. The XML object trees (O-trees)

are reversed from those of the given O-tree. Fig. 3(b)
shows the reversed O-tree w.r.t. the O-tree in
Fig. 3(a). If this reversal is done correctly, HCODs of
the original O-tree can be found as LCOAs of the
reversed O-tree.

In addition, to accelerate query processing, we
develop object index and keyword index for both the
reversed and the original O-trees. Moreover, we
derive several properties related to Dewey labels and
lemmas about the use of the reversed O-tree to
facilitate the NCON computation. These index and
optimization techniques provide an efficient
algorithm for retrieving NCONs.

We have implemented all of these ideas in
XComplete, our system for XML keyword search
with more complete set of answers. We then use
this system in our extensive experimental evaluation.

Our contributions can be summarized as follows.

• We present the impact of object identification in
XML keyword search. It helps return more
meaningful answer and improve the search
quality.

• We introduce a new semantics, called NCON,
for XML keyword search. Under this semantics,
an answer node is an object node, and not only
the LCOAs but also the HCODs are considered
as answers for a query. Therefore, the answer
set is more complete and each answer is more
meaningful compared to answers returned by the
LCA semantics and its extensions.

• We propose an NCON-based approach, which
uses both original and reversed O-trees to find
NCONs and return a more complete set of
meaningful answers for an XML keyword query.
Our post-processing techniques improve user
comprehension by filtering out duplicated
answers and merging answers from the same
context. Our indexes and optimization
techniques enable our approach to return
NCONs efficiently.

• We have developed XComplete system to
evaluate our approach. Experimental results on
real datasets show that XComplete outperforms
existing LCA-based approaches in terms of both
effectiveness and efficiency.

Roadmap. We introduce the concept of NCON
semantics in Section 2 and propose an NCON-based
approach in Section 3. Section 4 describes index and
optimization techniques. Experimental results are
shown in Section 5. We briefly review related works
in Section 6. We discuss benefits of object
identification in XML keyword search in Section 7.
Finally, we conclude the paper in Section 8.

2 OBJECT SEMANTICS

Not all nodes in XML documents correspond to
objects. In theory, XML elements are objects and
attributes. In practice, many XML elements are not
objects. It is straightforward, with only a bare
minimum of domain knowledge, to take an XML
document and mark up the nodes that are objects.
We assume that this has been done, in this paper.
The corresponding terminology is introduced in
Section 2.1.

The value of recognizing objects in XML
documents is recognized both in terms of managing
the returned results, and in terms of obtaining the
match, for which a novel definition, called NCON, is
introduced in Section 2.3.

XML allows the notion of reference links from a
node to other nodes not its children, using an IDREF
(ID Reference) mechanism. Such references are
frequently important in an object-oriented system.
However, they are typically not considered by XML
keyword search systems. In Section 2.4, we describe
our technique for managing IDREF.

2.1 Terminology

XML elements can be classified into object and
non-object nodes. Among non-object nodes, a special
attribute (or a set of attributes) that can uniquely
define an object is called object identifier (object ID).
For example, in XML data in Fig. 1,
Professor(1.1) is an object node while staffID,
Name are its attributes (non-object nodes), and
staffID is its object ID. This section introduce
concepts related to object used in this paper.

CONCEPT 2.1 (Object class vs. object ID) Similar
objects, i.e., objects with the same (or similar) set of

4

attributes, are grouped into an object class. An object
class has an object ID to uniquely identify objects.

Object ID is usually single with only one attribute.
However, there are still cases where object ID is a
composite of several attributes. We have algorithms
to discover such object ID in [8].

CONCEPT 2.2 (Object) An object represents a
real-world entity or concept. In an XML data tree, an
object is represented by a tag node, followed by a set of
attributes and their associated values to describe its
properties. Each object belongs to an object class and has
a unique object ID value.

Since an object is identified by object class and
object ID value, the same object is determined as
follows.

CONCEPT 2.3 (The same object) Two objects are the
same if they belong to the same object class and have the
same object ID value.

For example, Student(1.1.1) and
Student(1.2.1) refer to the same object because
they belong to the same object class Student and
they have the same object ID value 12745.

CONCEPT 2.4 (Object node) An object can occur at
many places in an XML data. Each occurrence is
represented by an object node. An object is identified by
object class and object ID value while its object nodes are
identified by its node identifier, i.e., label.

Multiple object nodes that refer to the same object
are usually identical. However, XML does not
enforce this. If we find two nodes that are not
identical, they are still considered as referring to the
same object as long as they have the same object
class and object ID value. For example, hobbies and
degrees of a staff can be represented at different
object nodes corresponding to the same staff object.
If such object is queried, the returned object should
include the union of attributes together with their
values of the matching object nodes. We do not
include attributes and values of the unmatching
object nodes because they are irrelevant. We assume
that the data is consistent because data integration
and data uncertainty are out of the scope of this
work.

CONCEPT 2.5 (Non-object node) Apart from object
nodes, all other nodes, e.g., attribute, value and
connection node, in an XML document are non-object
nodes. Each non-object node is associated with a
corresponding object node.

Since we differentiate object and non-object node in
XML data, a matching node is re-defined as follows.

CONCEPT 2.6 (Matching object node) A keyword k
matches an object node u if k matches u or k matches non-

object nodes associated with u1.

2.2 Object identification

An object is identified by its object class and object ID
value. In many cases, these are directly available,
because the XML schema was initially designed
based on those semantics. For example, in the XML
schema in Fig. 2, Professor, Student and
Paper are object classes, and StaffID, Stu_No
and PID are their object IDs, respectively. When this
is not the case, these values can be discovered from
XML schema and data by third-party algorithms
such as [14], [6], [8]. We apply algorithm [8] to
automatically discover such semantics and achieve
high accuracy (greater than 98% for object classes
and greater than 93% for object IDs). More details
can be found in [8].

2.3 The NCON semantics

This section introduces our proposed NCON
semantics, which includes both common ancestors
and common descendants to provide a more
complete answer set for XML keyword search. Our
proposed NCON semantics can be built on the LCA
semantics [4] or any of its variants such as
SLCA [17], VLCA [7] and ELCA [18]. For simplicity
of presentation, we work with LCA semantics in the
rest of this paper. It is straightforward to make the
necessary minor modifications required if any of the
variant semantics are preferred. Let u ≺a (�a)v
denote that node u is an ancestor (a descendant) of
node v. The NCON semantics and its two
components, which are LCOA (Lowest Common
Object Ancestor) and HCOD (Highest Common
Object Descendant), are defined as follows.

DEFINITION 1 (The LCOA of a set of nodes) Object
node u is the LCOA of a set of nodes {u1, . . . , un} if (1)
u �a ui ∀i = 1..n and (2) there exists no object node
v �a u s.t. v �a ui ∀i = 1..n.

The LCOA semantics is similar to the LCA
semantics. However, an LCOA must be an object
node while an LCA can be either an object node or a
non-object node. It is this difference which provides
the advantage of the NCON semantics, i.e., not
returning meaningless answers.

DEFINITION 2 (The HCOD of a set of object nodes)
Given a set of object nodes I = {u1, . . . , un}, the set of
object nodes H = {h1, . . . , hn} is the HCOD of I if
• (1) all hi’s refer to the same object and
• (2) ui �a hi ∀i = 1..n and

1. Specifically, k is contained in (1) object class of u, (2) object attributes
and their values of u, (3) composite attributes and aggregational nodes
associated to u, (4) relationship attributes and their values of the relationship
in which u is the lowest participating objects.

5

• (3) there exists no set of object node
H′ = {h′1, . . . , h′n} where h′i ≺a hi ∀i = 1..n which
satisfies the above two conditions.

HCOD is the distinguishing feature of the NCON
semantics. An HCOD contains a set of object nodes
which refer to the same object because common
descendant can not be represented as one node.

DEFINITION 3 (An NCON of a set of nodes) An
NCON of a set of nodes is either an LCOA or an HCOD
of that set of nodes.

2.4 Object reference
An XML data with ID References (IDREF) is not
represented as a tree any more, but as a graph
instead. However, such graph is not an arbitrary
graph. It still has hierarchical structure with
parent-child and ancestor-descendant relationships
between elements and sub-elements. An IDREF is
the link from a node to the node that it refers to. We
can consider these nodes have ancestor-descendant
relationship where the ancestor is the referee node
and the descendant is the referred node. As such,
ancestor-descendant relationship in an XML data can
be re-defined as follows.
ancestor(x, y) : −ancestor(x, z), ancestor(z, y).
ancestor(x, y) : −parent(x, y).
ancestor(x, y) : −IDREF (x, y).
ancestor(x, x).
As a result, object identification discussed in

Section 2.2 and the NCON semantics introduced in
Section 2.3 are still valid to an XML data with
IDREFs.

3 OUR NCON-BASED APPROACH

This section presents our proposed NCON-based
approach for XML keyword search, which applies
our proposed NCON semantics.

3.1 The mechanism of our approach
By following the NCON semantics, our approach
has two main goals which are improving precision by
ensuring that each answer is meaningful to users, and
improving recall by returning a more complete set of
answers. To achieve the first goal, our approach
works at object level, i.e., it searches for returned
nodes in an XML object tree (O-tree) instead of in an
XML data tree. An O-tree is extracted from the
corresponding XML data tree and is defined as
follows.

CONCEPT 3.1 (O-tree) An O-tree OT
O

is an XML
hierarchical structure which is extracted from an XML
data tree DT

O
by keeping all object nodes, but removing

all non-object nodes. For any two adjacent object nodes u
and v in DT

O
, there is a parent-child edge between u and

v in OT
O

.

For example, the O-tree extracted from the XML
data in Fig. 1 is shown in Fig. 3(a), in which Dewey
label is used to identify object node while object
class and object ID value are used to identify object.
Due to not counting non-object nodes, e.g., attributes
and values, the extracted O-tree is much smaller
than the corresponding XML data tree.

To achieve the second goal, the essence of the idea
is a reverse mechanism by which HCODs of the given
O-tree are turned into LCOAs in its reversed O-tree
which is defined as follows.

CONCEPT 3.2 (Reversed O-tree) Given an O-tree OT
O

,
the reversed O-tree w.r.t. OT

O
is the O-tree OT

R
such that

(1) for each path of object nodes /u1/u2/ . . . /un−1/un
from the root to a leaf in OT

O
, there is a corresponding

reversed path /u′n/u
′
n−1/ . . . /u

′
2/u
′
1 in OT

R
where each

pair of object nodes ui and u′i refer to the same object,
and (2) there is no other object node in OT

R
.

For example, Fig. 3(b) shows the reversed O-tree
extracted from the O-tree in Fig. 3(a). The reversed
O-tree is materialized in external memory and is
generated offline. The reversed O-tree serves for
searching HCODs only. Although there is
duplication in O-trees, such duplication does not
affect the efficiency of processing thank to our
indexes and optimization techniques, which will be
discussed in Section 4.
The completeness of using the reversed O-tree.
The set of answers for an XML keyword query
includes both common ancestors and common
descendants of nodes matching the query keywords.
Common ancestors can be found as in LCA-based
approaches while common descendants are found by
exploiting the reversed O-tree. Thus, although many
other O-trees, apart from the reversed O-tree,
capture the same information with the original
O-tree, only the duo of the original and reversed
O-tree is self-sufficient to return the more complete
set of answers.

3.2 Overview of the process
The process of our approach, as shown in Fig. 4,
comprises two components for offline and online
computations. For offline computations, the three
main tasks are extracting the O-tree, generating the
reversed O-tree and indexing. For online
computations, there are three phases, namely finding
NCONs, generating answers and post-processing
answers. For comprehensive understanding, we
briefly describe the main processes as follows.
Details will be discussed in the remaining of this
section and Section 4.

3.2.1 Offline computation

Extracting the O-tree. We extract the O-tree from a
given XML document by keeping only object nodes.

6

Properties

Classify a mapping

Generate a full answer

Merge PSTrees

Find NCONs

Generate PSTrees

Query

Get a mapping

Answer set

Offline computations

O
nl

in
e

co
m

pu
ta

tio
ns

Input – output flow
Input flow
Main flow

Original
O-tree

Reversed
O-tree

Keyword
list

Object
list

Attribute
list

Fi
nd

 N
C

O
N

s
Po

st
-p

ro
ce

ss
Original

XML data

Fig. 4. The process of our approach

In an XML document, an object node corresponds to
an object class in the corresponding XML schema.

Generating the reversed O-tree. The generation
process can be done in two main steps. First, we
traverse the original O-tree backward from each leaf
node to the root to form reversed paths and then
connects them to form an intermediate O-tree. After
that, it then merges the nodes of the the
intermediate O-tree which have the same set of
object ancestors. Details are given in Section 3.3.

3.2.2 Online computation

When a query has some keyword(s) which match
multiple objects, there are different mappings for that
query. Each mapping shows a map from the set of
query keywords to a set of matching objects. Let
Obj(k) denote the set of objects matching keyword
k2, a query mapping is defined as follows.

CONCEPT 3.3 (A query mapping) Given a keyword
query Q = {k1, . . . , kn}, a mapping of query Q is MQ =
∪ni=1{oi}, oi ∈ Obj(ki).

1.1.1.1 1.2.2.11.2.1.11.1.2.1Clinton
1.1.2 Student 81433

Paper 001
Q

Kennedy

1 1 1 1 1 2 2 11 2 1 11 1 2 1

1.1.1 1.2.1

1.2 Professor tken

Student 12745
Paper 001

Q

1.1.1.1 1.2.2.11.2.1.11.1.2.1 Paper 001

96

Fig. 5. Matching objects of Clinton and Kennedy

TABLE 1
Query mappings and their corresponding case

Mapping Objects (sorted) Case
MQ

1 Professor:tken, Student:81433 Case 3B
MQ

2 Student:81433, Student:12745 Case 3B
MQ

3 Student:81433, Paper: 001 Case 2
MQ

4 Professor:tken, Paper: 001 Case 2
MQ

5 Student:12745, Paper: 001 Case 2
MQ

6 Paper: 001 Case 1

2. An object matches keyword k when any of its object node
matches k

For example, consider query Q = {Clinton,
Kennedy} issued to the data in Fig. 1. Objects and
Dewey labels of matching object nodes are shown in
Fig. 5. Query mappings of Q are given in Table 1, in
which cases for optimization purposes will be
discussed in Section 4.

We handle query mappings on finding NCONs
because of the following advantages: (1) merging
answers of the same query mapping to avoid
overwhelming users by a plethora of returned
answers and to make the merged answer more
comprehensive to users, and (2) processing a query
more efficiently and effectively because many
duplicated and irrelevant answers are filtered out on
the fly. Therefore, we process a query based on its
mappings. The number of mappings is not much
because of two reasons. First, the number of object
nodes in an O-tree is much less than the total
number of arbitrary nodes in the corresponding
XML data tree. Second, duplicated objects are
excluded based on object ID of object class. We
provide a basic algorithm for query processing in
Section 3.4 and an optimized algorithm in
Section 4.4.

3.2.3 Improving efficiency

The challenging issue is how to exploit the reversed
O-tree for a more complete answer set while the cost
is not double. We observe that in many cases, the
reversed O-tree is not necessary because it provides
no new answer. Thus, we propose a lemma for the
necessity of the reversed O-tree as follows.

LEMMA 1 (The necessity of the reversed O-tree)
Given a set of matching nodes S = {u1, u2, . . . , un}
where ui matches keyword ki, the reversed O-tree does
not provide any new answer for S if there exist two nodes
ui, uj ∈ S such that they are the leaf nodes in the
original O-tree.

The rationale behind is that when ui and uj are
the leaf nodes in the original O-tree, they become
the highest nodes in the reversed O-tree with no
ancestor beside the root. They do not have
ancestor-descendant relationship for one of them to
become a common ancestor either. As such, there is
no common ancestor of these two nodes. Thus, there
is no common ancestor of S.

Another technique to improve efficiency is
filtering out duplicated answers efficiently.
Duplicated answers provide nothing new or even
annoy users. Removing them at post-processing step
when we already need cost for retrieving them is
very inefficient. Thus, we propose some properties
to filter out duplicated answers on the fly and get
the optimal cost O(1) for some cases. These
optimization techniques are described in Section 4

7

Student
12745

Paper
001

Professor
sbrown

Student
81433

Professor
sbrown

Paper
001

Student
12745

Professor
sbrown

Paper
002

Root

Paper
003

Student
81433

Professor
sbrown

Student
12745

Paper
001

Professor
tken

Student
12745

Paper
002

Professor
tken

Student
00746

Paper
001

Professor
tken<1, Professor sbrown, 0>

<2, Student 12745, 1>

<4, Paper 002, 2>
<3, Paper 001, 2>

…….

<5, Student 81433, 1>
<6, Paper 001, 5>

Fig. 6. Intermediate O-tree

3.3 Generating the reversed O-tree

Before generating the reversed O-tree, there is an
intermediate step of generating the intermediate
O-tree. We also consider XML documents with
complicated schema.

3.3.1 Generating the intermediate O-tree

Algorithm 1 presents the process of generating the
intermediate O-tree from the original O-tree OT

O
.

We traverse OT
O

backward from each leaf node to
the root to form a reversed path. Then, all reversed
paths are connected to form the intermediate O-tree.
We use an array-like-stack S to store all object nodes
in OT

O
. An array-like-stack is an array in which

push and pop operators are used in similar way to a
stack while we still can access any element in S like
an array. We traverse OT

O
by depth first order and

push visited object nodes into S. To handle the
branches in the tree, we maintain the parent of each
object node. Thus, we use the triple
〈i, (objCls(i) − OID(i)), pre(i)〉 to represent each
object node i, where i is the index by depth first
order (i starts from 1), objCls(i) and OID(i) are the
object class and object ID of i and pre(i) is the index of
the parent of i. Fig. 6 shows the intermediate O-tree
w.r.t. the original O-tree in Fig. 3(a).

Algorithm 1: Generating the intermediate O-tree
Input: The original O-tree OT

O
Output: Intermediate O-tree OT

I
1 Variables: Array-like-Stack S to store object nodes in OT

O
2 Traverse OT

O
by depth first order

3 for visited object node i ∈ OT
O

do
4 S.Push (〈i, (objCls(i)−OID(i), pre(i)〉)

5 OT
I

. Add (Root)
6 OT

I
. NewBranch

7 while S 6= ∅ do
8 〈i, (objCls(i)−OID(i), pre(i)〉 ← S.Pop
9 OT

I
. Add (objCls(i)−OID(i))

10 if pre(i) = 0 then
11 OT

I
. NewBranch

12 if pre(i) 6= i− 1 and pre(i) 6= 0 then
13 k ← pre(i)
14 while k 6= 0 do
15 Access element k 〈k, (objCls(k)−OID(k), pre(k)〉
16 OT

I
. Add (objCls(k)−OID(k))

17 if pre(k) = 0 then
18 OT

I
. NewBranch

19 if pre(k) = k − 1 then
20 k. Next

21 k ← pre(k)

3.3.2 Generating the reversed O-tree
To generate the reversed O-tree from the
intermediate O-tree, we merge object nodes having
the same set of ancestors. Particularly, at the first
level of the intermediate O-tree, we merge branches
in which the starting object nodes refer to the same
object. Then we recursively merge the lower levels.
Fig. 7 demonstrates merging processes w.r.t. the
intermediate object node in Fig. 6.

Student
12745

Paper
001

Professor
sbrown

Student
81433

Professor
sbrown

Student
12745

Professor
tken

Student
00746

Professor
tken

Student
12745

Paper
001

Professor
sbrown

Professor
tken

Student
81433

Professor
sbrown

Student
00746

Professor
tken

Student
12745

Paper
001

Professor
sbrown

Student
81433

Professor
sbrown

Paper
001

Student
12745

Professor
sbrown

Paper
002

Root

Paper
…..

Root

Paper
…..

Root

Paper
…..

<1, Professor, 0>

<2, Course, 1>

<4, Course, 3>

<3, Student, 1>

(a) The first level

Student
12745

Paper
001

Professor
sbrown

Student
81433

Professor
sbrown

Student
12745

Professor
tken

Student
00746

Professor
tken

Student
12745

Paper
001

Professor
sbrown

Professor
tken

Student
81433

Professor
sbrown

Student
00746

Professor
tken

Student
12745

Paper
001

Professor
sbrown

Student
81433

Professor
sbrown

Paper
001

Student
12745

Professor
sbrown

Paper
002

Root

Paper
…..

Root

Paper
…..

Root

Paper
…..

<1, Professor, 0>

<2, Course, 1>

<4, Course, 3>

<3, Student, 1>

(b) The second level

Fig. 7. Merging branches having the same set of
ancestors

Space complexity. We store two O-trees in the
memory. Thus, the space complexity is O(2N) where
N is the average number of object nodes in an
O-tree. The number of object nodes is much smaller
than the total number of nodes in an XML data tree,
thus the space complexity is feasible even for a large
XML document.

Time complexity. Each element in the
array-like-stack is processed once so the cost is O(N)
where N is the number of elements in the
array-like-stack. To generate the reversed O-tree, for
each level of the tree, it costs O(M) where M is the
average number of nodes in each level. Hence, the
total cost is O(N + d ×M) where d is the depth of
the schema tree.

3.3.3 XML document has complicated structure
If an object class has more than one occurrence in the
XML schema, e.g., object class Student in Fig. 8(a), its
corresponding objects may have more than one role in
the XML data, e.g., object Student A007 in Fig. 8(b).
Our process of the reversed O-tree generation is still
valid. Fig. 8(c) shows the reversed O-tree w.r.t. the
original O-tree in Fig. 8(b).

Project

Student

Professor

Student Course

Student

(a) Multi class paths

Student
A007

Professor
Jenni

Project
NGS

Student
A007

Course
XML

Student
A007

(b) Original data

Professor
Jenni

Student
A007

Project
NGS

Professor
Jenni

Course
XML

Professor
Jenni

(c) Reversed data

Fig. 8. Object with multiple roles

When XML document has complicated structure
related to relationship, the above process of
generation is extended by adding some extra
operators as follows.

8

• An explicit relationship is kept in the O-tree.
• An n-arry relationship (n ≥ 3) is reversed as a

set of binary relationships, because such
reversion already enables us to find common
descendants.

• An one-to-many relationship is not reversed.
• A relationship attribute is added to the lowest

object node of the relationship it belongs to.

3.4 Query processing

When a query Q is issued on an XML document, we
first translate it into all possible query mappings. We
then process each query mapping separately because
each query mapping can provide at least one
meaningful answer that distinct with existing
answers, and the number of query mappings is
acceptable. For ease of processing, objects in a query
mapping are sorted ascendingly by the number of
object nodes. To process a query mapping MQ, we
find LCOAO(MQ) and LCOAR(MQ), where
LCOAO(MQ) and LCOAR(MQ) are the set of
LCOAs for MQ w.r.t. the original O-tree OT

O
and

the reversed O-tree OT
R

, respectively. In
implementation aspect, we adopt SLCA semantics
and the Indexed Lookup Eager Algorithm in [17] to
find LCOAs. By the reverse mechanism, we then
translate the LCOAR(MQ) to HCODO(MQ). By
Lemma 1, the reversed O-tree is not necessary if
more than one object in MQ corresponds to leaf
nodes. NCONs for MQ is the union of
LCOAO(MQ) and HCODO(MQ). Let lbl(o) be the
list of Dewey labels corresponding to the set of
object nodes referring to object o, the basic progress
of finding NCONs for a query mapping is presented
Algorithm 2 while the optimized algorithm is
studied in Section 4.

Algorithm 2: Processing a query mapping
Input: A query mapping MQ = {o1, . . . , om}
Output: NCON(MQ)

1 NCON(MQ) ← ∅
2 LCOAO(MQ) ← find LCOAs (MQ) w.r.t. OT

O

3 NCON(MQ) ← LCOAO(MQ)
4 if @ij ∈ [1..m] such that Class(oi) and Class(oj) are leaf nodes then
5 LCOAR(MQ) ← find LCOAs (MQ) w.r.t. OT

R

6 HCOD(MQ) ← LCOAR(MQ)

7 NCON(MQ) ← LCOAO(MQ)
⋃
HCOD(MQ)

Complexity. Searching a match (left match, right
match) in lbl(oi) costs O(log(|lbl(oi)|)). The
complexity of finding LCOAO(MQ) is
O(|lbl(o1)| ×

∑m
i=2 log(|lbl(oi)|)) where m is the

number of objects, |lbl(o1)| and |lbl(om)| are the
smallest and the biggest among all |lbl(oi)|’s. Thus,
the complexity of finding LCOAO(MQ) is
O(|lbl(o1)| × m × log(|lbl(om)|)). The complexity of
finding LCOAR(MQ) is similar to that of finding
LCOAO(MQ). Thus, the total cost of finding the set

Algorithm 3: finding LCOAs(MQ)
Input: A query mapping MQ = {o1, . . . , om} //sorted

ascendingly by the number of object nodes)
Output: LCOAs

1 for i = 1→ |lbl(o1)| do
2 LCOA ← lbl(o1)[i]
3 for j = 2→ m do
4 lm ← get left match (LCOA, lbl(oj))
5 rm ← get right match (LCOA, lbl(oj))
6 lLCOA ← lcoa(LCOA, lm)
7 rLCOA ← lcoa(LCOA, rm)
8 LCOA ← get smaller LCOA (lLCOA, rLCOA)

9 LCOAs. Add (LCOA)

10 LCOAs. RemoveAncestorLCOAs

of NCON nodes w.r.t. a query mapping having m
objects is O(|lbl(o1)| × m × log(|lbl(om)|)) and
O(|lbl(o1)| × 2m × log(|lbl(om)|)) for the best and the
worst case respectively, where the reversed O-tree is
always unnecessary/necessary to process a query.

3.5 Output presentation and post-processing
3.5.1 Output presentation

Presentation of an answer. To avoid returning
irrelevant information, we present an answer as a
partial subtree psT (R,N) where R and N are the root
and the set of object nodes in psT . A PSTree is a
subtree rooted at a returned NCON and contains
only object nodes on the paths from the returned
object node to the matching object nodes.
Converting answers from the reversed O-tree to
the original O-tree. For easy comprehension, we
only show outputs on the original XML document
because the reversed document is used without
users’ awareness. Answers from the reversed
document are converted into the original document.

3.5.2 Output post-processing
Removing duplicated answers. Duplicated answers
can overwhelm users with extraneous information. If
an object o appears 100 times in an XML document,
when o is queried, there may be 100 duplicated
answers which overwhelm and annoy users.
Without object identification, these duplicates have
to be determined through syntactic analysis, since
they are actually distinct nodes in the XML tree.
With object identification, they become trivial to
detect. In a simple post-processing step, we filter out
these duplicates. We also propose techniques to filer
such duplicates on the fly.
Merging answers for the same query mapping.
Intuitively, a query mapping provides the context of
a query which describes the meaning of the set of
query keywords. An answer for a query mapping
shows a view of the context. To show the global
view of the context, we merge answers for the same
query mapping. For example, query {XML,
Database} has a mapping containing two papers

9

about XML and Database. Suppose there are two
answers for this mapping: the common
conference and the common authors. If these
two answers are merged, the merged answer means
that both papers are written by the common authors,
and are accepted by the common conference. As can
be seen, the merged answer provides more complete
comprehension of the context rather than the two
separated ones. On the other hand, we do not merge
answers from different mappings because they
provide different aspects of a query. For example, if
the above query has another mapping with the
meaning of two courses about XML and
Database, the answer about common students
taking these courses should not be merged with the
above two answers. The other benefit of merging
answers is to deal with information overload when
query keywords match a lot of objects.

For illustration of the output presentation and
post-processing, the final answers for all mappings
of query {Clinton, Kennedy} after
post-processing are shown in Fig. 9.

Student
1.1.2

Paper
1.1.2.1

Professor
1.2

Student
1.2.1
Paper
1.2.1.1

Anonymous root

{Kennedy}{Cinton}

Student
1.2.2

Paper
1.2.2.1

HCODs

LCOAs

Keyword
Object

ID

Anotations

Paper
001

1.1.1.1

{Kennedy,
Clinton}

Student
12745
1.1.1

Paper
001

1.1.1.1
{Cinton}

{Kennedy}

Professor
tken

1.2

Student
12745
1.2.1

Paper
001

1.2.1.1

{Kennedy}

{Cinton}

Student
00746
1.2.2

Paper
001

1.2.2.1
{Cinton}

Student
81433
1.1.2

Paper
001

1.1.2.1

{Cinton}

{Kennedy}

Student
12745
1.1.1

Paper
001

1.1.1.1

Professor
sbrown

1.1

Student
81433
1.1.2

Paper
001

1.1.2.1

{Cinton}{Kennedy}

Student
81433
1.1.2

Paper
001

1.1.2.1

Professor
tken

1.2

Student
12745
1.2.1

Paper
001

1.2.1.1

Anonymous root

{Kennedy}{Cinton}

(a) (b) (c) (d) (e) (f)

HCODs

LCOAs Keyword
Object

ID

Anotations

Fig. 9. Final answers of query {Clinton, Kennedy}

4 INDEX AND OPTIMIZATION

To enhance online performance, we maintain two
main indexes, and propose some optimization
techniques to filter out duplicated answers on the
fly. We have two observations. First, each query has
at least one distinct meaningful answer and thus we
still need to process each query mapping. Second, in
some cases, a query mapping provides only one
answer. In such cases, after finding the first answer,
we can stop processing because all new answers will
be duplicated. Thereby, the efficiency is largely
improved.

In this section, we classify a query mapping into
different cases to remove duplicated answers
efficiently. We also optimize the classification by
leveraging some properties. Moreover, among
classified cases, we carefully check the ones that do
not need to use the reversed O-tree beside the case
discussed in Lemma 1.

4.1 Indexes
4.1.1 Keyword list
Similar to traditional inverted list, our approach
pre-computes the keyword list to efficiently retrieve
the set of object nodes in the original document
matching a keyword. However, the way our
approach maintains the keyword list is different
from that of the inverted list. In our approach, each
keyword matches a list of objects ordered
decreasingly by hierarchical level of objects. A
matching object corresponds to a list of Dewey labels
sorted by preorder numbering. Table. 2 shows part
of the keyword list of the XML data in Fig. 1, in
which keyword Kennedy matches three objects and
keyword Clinton matches two objects.

TABLE 2
Keyword list of the original document

Keyword Labels grouped by object
Kennedy {1.2},

{1.1.1, 1.2.1},
{1.1.1.1, 1.1.2.1, 1.2.1.1, 1.2.2.1}

Clinton {1.1.2},
{1.1.1.1, 1.1.2.1, 1.2.1.1, 1.2.2.1}

... ...

4.1.2 Object list
Object list is created for two purposes. It is used to
determine whether two object nodes refer to the same
object or not, and more importantly, to identify the set
of object nodes in the reversed O-tree corresponding
to a given object. This set of object nodes will be used
to find answers from the reversed O-tree. Each object,
represented as a pair of object class and object ID value,
is indexed with a list of Dewey labels of its object nodes
in both the original and the reversed O-trees. Part of
the object list of the O-trees in Fig. 3 is given in Table 3.

TABLE 3
Object list of the original and reversed O-trees

Object class Object ID Labels in OT
O

Labels in OT
R

Professor sbrown 1.1 1.1.1.1, 1.1.2.1,
1.2.1.1, 1.3.1.1

Student 12745 1.1.1, 1.2.1 1.1.1, 1.2.1
Paper 001 1.1.1.1, 1.1.2.1,

1.2.1.1, 1.2.2.1
1.1

...

Besides the two main lists, our approach maintains
the attribute list in which each object node corresponds
to an object class, an object ID, a set of object attributes
and their associated values. This list is used to restore
the output with full attributes and values.

4.2 Cases of query mappings
Before introducing cases of query mappings, we
introduce some related concepts.
Object class path. In an XML schema, an object
class may have multiple occurrences. An occurrence

10

is identified by the path from the root to the
occurrence, referred to as object class path in this
paper. For example, in the XML object class tree
Fig. 8(a) (extracted from an XML schema by keeping
only object classes), object class Student has three
occurrences corresponding to three object class
paths: Root/Professor/Student,
Root/Professor/Project/Student, and
Root/Professor/Course/Student. An object is
an instance of an object class in XML document.

Let ObjNode(o) be the set of object nodes referring
to object o and ObjNode(o, p) as the set of object nodes
w.r.t. object class path p of object o.
Ancestor object w.r.t. object class path. Consider
two objects o1 and o2. If each object node in
ObjNode(o1, p1) has some node in ObjNode(o2, p2)
as its descendant, then object o1 is considered as an
ancestor of object o2 w.r.t. object class paths p1 of o1
and p2 of o2. For example, in Fig. 3(a),
Student:12745 is an ancestor object of Paper:001.

CONCEPT 4.1 (Ancestor-descendant (AD) chain
w.r.t. a set of object nodes) Object nodes n1, . . . , nm
(ordered decreasingly by hierarchical level) have AD chain
iff ni is an ancestor object node of ni+1 ∀i = 1..(m− 1).

CONCEPT 4.2 (AD chain w.r.t. a set of objects)
Objects o1, . . . , om have AD chain iff there exists a set of
object node S = {n1, . . . , nm}, ni ∈ ObjNode(o, pi) such
that object nodes in S have AD chain.

For example, objects Professor:sbrown,
Student:12745 and Paper:001 have AD chain
because there exists an AD chain between their
object nodes Professor(1.1), Student(1.1.1)
and Paper(1.1.1.1).
Cases of query mapping. We classify a query
mapping MQ into the following cases based on the
relationships of objects in MQ.
• (Case 1) MQ contains only one object.
• (Case 2) MQ has multiple objects and objects in
MQ have AD chain.

• (Case 3) Objects in MQ have no AD chain. This
case is further divided into two sub-cases.
– (Case 3A) At least two objects correspond to

leaf node.
– (Case 3B) At most one object corresponds to

leaf node.
The rationale of this classification is to determine

the cases which provide only one answer and the
cases which do not need the reversed O-tree to be
processed. By Lemma 1, only Case 3A does not need
to use the reversed O-tree. However, by carefully
examination, we find that Case 1 and Case 2 do not
need the reversed O-tree either. For Case 1
(MQ = {o}), each object node in ObjNode(o) is the
NCON of itself and the reversed O-tree does not
provide any additional answer from the original
O-tree. For Case 2, the chain among objects in MQ

is an answer. If the reversed O-tree is used, the
answer is also this chain with the reversed order.
Thus, the reversed O-tree does not return any new
answer. Therefore, we extend Lemma 1 as follows.

LEMMA 2 (Lemma 1 - Extension) Given a query
mapping MQ, the reversed O-tree is necessary to process
MQ only when objects in MQ have no AD chain and at
most one object in MQ corresponds to leaf node.

4.3 Case classification
Recall that ObjNode(o) denotes the list of object
nodes referring to object o. This section provides
identification of cases of a query mapping.

4.3.1 Identifying Case 1
Identifying Case 1 requires removing duplicated
objects, which can be done by exploiting the
following properties.

Property 1: ObjNode(o1) ∩ ObjNode(o2) = ∅ for all
objects o1 6= o2.

Proof: One object node cannot refer to two objects.
Thus, the list of Dewey labels of any two different
objects cannot be overlapped.

Two objects o1 and o2 are the same if their lists of
object nodes are the same. o1 = o2 if ObjNode(o1) =
ObjNode(o2), where ObjNode(o1) = ObjNode(o2) if
|ObjNode(o1)| = |ObjNode(o2)| and ObjNode(o1)[i] =
ObjNode(o2)[i] ∀i = 1..|ObjNode(o1)|. With
Property 1, we can figure out whether two objects
are the same or not right after testing their first object
nodes.

Property 2: Objects o1 and o2 are the same if
ObjNode(o1)[1] = ObjNode(o2)[1].

Proof: Suppose that objects o1 6= o2, then
ObjNode(o1) ∩ ObjNode(o2) = ∅ (Property 1).
However, if ObjNode(o1)[1] = ObjNode(o2)[1], then
ObjNode(o1) ∩ ObjNode(o2) 6= ∅. Thus, if
ObjNode(o1)[1] = ObjNode(o2)[1], then o1 = o2.
Complexity of checking Case 1. Property 2 enables
our approach to remove duplicated objects in MQ
efficiently. The complexity of checking whether two
objects are duplicated is O(1) because only their first
Dewey labels are tested. After removing duplicated
objects in MQ, the complexity of checking Case 1 is
O(1) since MQ falls into Case 1 if |MQ| = 1.

4.3.2 Identifying Case 2
Without loss of generality, we present the case where
an object class has only one object class path in an
XML schema. The case where an object class has
multiple class paths in an XML schema is presented
in our Section 4.5. To speed up the checking of Case
2, we exploit some other properties as follows.

Property 3: For an object o, the subtrees rooted at
all object nodes in ObjNode(o) are the same if o
and its descendant objects are not involved in n-arry
relationships (n ≥ 3).

11

For example, two object nodes Student(1.1.1)
and Student(1.2.1) in Fig. 1 refer to the same
object Student 12745. As can be seen, the subtrees
rooted at these two object nodes are the same.
Property 3 is useful for testing AD chain of objects
since we only need to test the subtrees rooted at the
first node of the highest object as stated in Property 4.

Proof: Property 3 is based on the fact that if two
objects o1 (the ancestor) and o2 (the descendant) has
a binary relationship, then for each node u ∈
Node(o1), the number of nodes in Node(o2) which
are descendants of u are the same. Property 3 can be
proved by using this fact recursively. Suppose there
exists a set of objects {o1, . . . , on} (sorted
decreasingly by hierarchical level of objects), in
which there is a binary relationship between any
two adjacent objects oi and oi+1, i = 1..(n − 1). For
all oi, i = 1..(n − 1), for each node u ∈ Node(oi), the
number of nodes in Node(oi+1) which are
descendants of u are the same. Thus, for all nodes
vi ∈ Node(o1), the set of all descendants of vi’s are
the same. In other words, the subtrees rooted at vi’s
are the same.

Property 4: Objects o1, . . . , om (ordered decreasingly
by hierarchical level of objects) have AD chain if there
exists an AD chain among object nodes u1, . . . , um
where u1 = ObjNode(o1)[1] and ui ∈ ObjNode(oi)
∀ i = 2..m .

Proof:
Phase 1: If there exists a chain (u1, . . . , um), u1 =

Node(o1)[1] , ui ∈ Node(oi), i = 2..m s.t. ui ≺n ui+1 ,
i = 1..(m − 1), then there exists a chain (u1, . . . , um),
ui ∈ Node(oi), i = 1..m s.t. ui ≺n ui+1 , i = 1..(m−1).
Thus, oi ≺o oi+1, ∀i = 1..(m − 1). Therefore, objects
o1, . . . , om have AD chain (by Concept 4.2).

Phase 2: If for u1 = Node(o1)[1] , there exists no
chain (u1, . . . , um), ui ∈ Node(oi), i = 2..m s.t. ui
≺n ui+1 , i = 1..(m − 1), then for other node u1 ∈
Node(o1) there exist no such chain either (by Property
3). Therefore, objects o1, . . . , om have no AD chain (by
Concept 4.2).

Checking AD chain. Algorithm 4 provides the
checking of the AD chain of objects. By Property 4,
only the chain started with the first object node of the
highest object is checked. Let oi ∼ oj denote that
objects oi and oj are at the same level, and Dw(u)
denote Dewey label of object node u.

Complexity. |Si| is usually much smaller than
|ObjNode(oi)|. In the worst case, the complexity is
O(

∑m
2 log(|Si|)). Usually, |Sm| is the biggest number

among |Si|’s. Thus, the complexity is O(mlog(|Sm|)).

4.3.3 Identifying Case 3A and Case 3B

Object o has no descendant object if Class(o) is a leaf
node in XML schema. This checking operation costs
O(1).

Algorithm 4: Checking AD chain w.r.t. objects
Input: {o1, . . . , om} (ordered decreasingly by hierarchical level of

objects)
1 if ∃oi, oj , oi � oj then
2 return FALSE;

3 cur = ObjNode(o1)[1] //Property 4
4 for i = 2→ m do
5 Si ← {n | n ∈ ObjNode(oi) s.t. Dw(n) precedes Dw(cur)}
6 if ∃u ∈ Si, cur ≺a u then
7 cur ← u

8 else
9 return FALSE

10 return TRUE;

4.4 The optimized algorithm

Follows are discussion on the way we filter out
duplicated answers for Case 1 and Case 2.

Case 1 (MQ = {o}). Any object node in ObjNode(o)
is the NCON of itself. However, our approach
returns only ObjNode(o)[1] and filters out the
remaining nodes because they provide duplicated
answers.

Case 2 (Objects in MQ = {o1, . . . , om} have AD
chain). By Concept 4.2, LCOAO(MQ) =
{u | u ∈ ObjNode(o1)}. Moreover, by Property 3, all
PSTrees rooted at u’s provide duplicated answers.
Thus only ObjNode(o1)[1] is returned and all the
remaining duplicated answers are filtered.

Based on Lemma 2 and the above analysis, we
propose the optimized algorithm (Algorithm 5) for
query mapping processing, in which duplicated
answers are filtered out on the fly. As a result, we
get the optimal cost O(1) to process query mappings
of Case 1 and Case 2.

Algorithm 5: The optimized algorithm
Input: A query mapping MQ = {o1, . . . , om}
Output: NCON(MQ)

1 NCON(MQ) ← ∅
2 //Case 1: MQ containing only one object
3 if |MQ| = 1 then
4 NCON(MQ) = {ObjNode(o1)[1]}

5 else
6 isAD ← Check AD chain ({o1, . . . , om})
7 //Case 2: objects in MQ having AD chain
8 if isAD = TRUE then
9 NCON(MQ) = {ObjNode(o1)[1]} //Property 3

10 //Case 3: objects in MQ having no AD chain
11 else
12 //finding NCONs in the original O-tree
13 LCOAO(MQ) ← find LCOAs (MQ) w.r.t. OT

O

14 NCON(MQ). AddAll (LCOAsO(MQ))
15 //finding NCONs in the reversed O-tree
16 if more than one object having descendant objects then
17 LCOAR(MQ) ← find LCOAs (MQ) w.r.t. OT

R

18 HCOD(MQ) ← transfer from LCOAR(MQ)

19 NCON(MQ) ← LCOAO(MQ)
⋃
HCOD(MQ))

Complexity of Algorithm 5. Complexities for
checking conditions and for finding NCONs in each
case are given in Table 4.

12

TABLE 4
Complexities

Case 1 Case 2 Case 3A Case 3B
Proportion of queries α1 α2 α3 α4

Checking conditions O(1) C1 O(1) 0
Finding NCONs O(1) O(1) C2 2C2

C1 = O(mlog(|Sm|)) where Sm is the number of
labels in ObjNode(om) used in the checking
progress. C2 = O(|lbl(o1| × m × log(|lbl(om|)). The
total complexity of processing a query mapping is
O(α1 + (α2 ×C1) + (C1 +C2)× (α3 +2α4). Since the
costs of finding NCONs of Case 1 and Case 2 are too
small, and C1 is dominated by C2, the complexity
becomes O(C2 × (α3 + 2α4)) which is always better
than O(2C2) of the algorithm without optimization.
Since our approach can return NCONs for query
mappings of Case 1 and Case 2 with the optimal
O(1) cost, it outperforms all existing systems in
terms of efficiency when handling such cases.

4.5 Multiple class path

In this section we handle the case where an object
class has multiple paths in an XML schema. The
query mapping is re-defined as a set of distinct
objects w.r.t. a certain path, each of which matches at
least one keyword in the query, and each query
keyword has at least a match in the mapping. Let
(oi, p) be the object w.r.t. the object class p, the
extension of a query mapping is defined as follows.

CONCEPT 4.3 (A query mapping - Ext) Given a
keyword query Q = {k1, . . . , kn}, a mapping of query Q
is MQ = ∪ni=1{(oi, p)} where (oi, p) ∈ Obj(ki, p).

By redefining the concept of a query mapping, the
techniques and optimization to handle each query
mapping is still valid.

5 EXPERIMENT

This section evaluates our approach on three aspects
including efficiency, effectiveness and quality of the
generated reversed O-tree.

5.1 XComplete system

We have developed XComplete, a system for XML
keyword search, based on all of our ideas including
the proposed NCON-based approach, index and
optimization techniques. XComplete was
implemented using Java and was used for
experimental evaluation.

5.2 Experimental Setup

Environment. Experiments were performed on a
dual-core Intel Xeon CPU 3.0GHz running Windows

XP operating system with 4GB of RAM and a 320GB
hard disk.
Datasets. Three real datasets were employed
including NBA3, which contains all teams and
players of the basketball leagues during 1946− 2004;
DBLP4, which includes all the conference papers
during 1959 − 2010; and SIGMOD Record5, which
contains on-line issues of SIGMOD Record. Table 5
gives the statistics of the three datasets.

TABLE 5
Statistics of datasets

Dataset No. of
nodes

No. of
object
nodes

No. of
object
classes

No. of
words

No. of
keywords

Data
size

NBA 135,940 1,140 4 223,500 8,302 2.3M
DBLP 17,501,788 8,487,422 9 48,191,004 2,893,195 738M
SIGMOD 31,627 6,449 4 46,311 6,511 500K

Query set. We randomly generated 200 queries from
document keywords. To avoid meaningless queries,
we filtered out generated queries whose keywords are
not related to each other at all. 143 remaining queries
include 25, 100 and 18 queries for NBA, DBLP and
SIGMOD Record datasets, respectively.
Compared Algorithms. We compared XComplete
(the optimized algorithm) with the state-of-art
algorithms, XKSearch [17], XSEarch [3] and
VLCA [7]. We adopted Indexed Lookup Eager
Algorithm of XKSearch and VLCAStack Algorithm
of VLCA for computation since they achieve better
performance.
Metrics. To measure the efficiency, we compared the
running time of finding returned nodes, e.g.,
NCONs in XComplete and LCAs in the compared
algorithms. For each kind of queries, e.g., 2-keyword
query, we selected five queries among 143 generated
queries sharing the same properties. For each query,
we ran it ten times to get the average response time.
We finally reported the average response time of five
queries for one kind of query.

To evaluate the effectiveness, we used standard
Precision (P), Recall (R), and F-measure (F) metrics.
Precision measures the percentage of answers that
are desired. Recall measures the percentage of the
desired answers that are output. F-measure is the
harmonic mean of precision and recall, and is
calculated as Fα = (1+α2)×P×R

α2×P+R . α = 1, α = 0.5 and
α = 2 correspond to evenly weight to precision and
recall, double weight to precision, and double
weight to recall respectively.

We randomly selected a subset (35 queries) of 143
generated queries for effectiveness evaluation. To
compute precision and recall, we conducted surveys
on the above 35 queries and the test datasets. We

3. http://www.nba.com
4. http://dblp.uni-trier.de/xml
5. http://www.dia.uniroma3.it/Araneus/Sigmod/

13

0

20

40

60

80

100

NBA DBLP SIGMOD

Pr
ec

is
io

n
(%

)

(a) Precision

0

20

40

60

80

100

NBA DBLP SIGMOD

R
ec

al
l (

%
)

(b) Recall

0

20

40

60

80

100

NBA DBLP SIGMOD

F-
m

ea
su

re
(%

)

0

20

40

60

80

100

NBA DBLP SIGMOD

F-
m

ea
su

re
(%

)

(c) F1-measure(α = 1)

0

20

40

60

80

100

NBA DBLP SIGMOD

F-
m

ea
su

re
(%

)

0

20

40

60

80

100

NBA DBLP SIGMOD

F-
m

ea
su

re
(%

)

(d) F2-measure(α = 2)

0

20

40

60

80

100

NBA DBLP SIGMOD

XKSearch

XSEarch

CVLCA

XComplete F-
m

ea
su

re
(%

)

(e) F0.5 -measure(α = 0.5)

Fig. 10. Effectiveness Evaluation

asked 25 researchers of our database labs to interpret
35 queries. Interpretations from at least 18 out of 25
researchers are manually reformulated into
schema-aware XQuery queries and the results of
these XQuery queries are used as the ground truth.
Let T and K denote the result set of XQuery queries
and that of the compared algorithms respectively.
The precision and recall are P = |T∩K|

|T | and
R = |T∩K|

|K| .

5.3 Effectiveness Evaluation

Precision. Fig. 10(a) shows the precision of all
algorithms, among which, XComplete obtains the
highest precision for all datasets (higher than 96%)
for two reasons. First and most importantly, by
applying the NCON semantics, XComplete does
not return meaningless answers because only object
nodes are returned as NCONs. Second, the output
presentation and post-processing enable XComplete
to filter out duplicated answers, and to improve user
comprehension, while the compared methods do not
focus on the post-processing phase.
Recall. Fig. 10(b) plots the recall of all algorithms,
among which, XComplete achieves the highest
recall (higher than 98%) for all datasets. The
difference of recall between XComplete and other
algorithms is more than 25%. The most important
reason is the more completeness of its answer set.
When query mappings fall into case 3B, XComplete
is the only system that is able to return common
descendants. The difference in terms of recall is
higher than precision. XComplete improves both
precision and recall, but the more important
contribution is improving recall because XComplete
is the first system to return common descendants.
F-measure. Since XComplete achieves the best
performance in term of both precision and recall, it
outperforms the other algorithms and achieves the
best F-measure (higher than 97%) as shown in
Fig. 10(c)(d)(e).

5.4 Efficiency and Scalability Evaluation

Efficiency. The response time of algorithms is shown
in Fig. 11, in which we varied the number of query
keywords, the number of matching nodes and the
percentage of datasize. XComplete outperforms the

other algorithms for all datasets because of two
reasons. First, XComplete searches over the O-tree
which is much smaller than the XML document.
Second, XComplete can filter out duplicated and
irrelevant answers on the fly. Particularly,
XComplete processes query mappings of Case 1
and Case 2 efficiently with the optimal cost O(1).
Moreover, the running time of XComplete increases
at a much slower rate (w.r.t. the number of matching
nodes) compared to the other algorithms. This is
because the running time of XComplete depends on
the number of matching objects rather than
matching nodes. Among the other algorithms,
XSEarch is inefficient since it requires computing an
all-pairs interconnection index. XKSearch and VLCA
have the similar performance.

Impact of object identification. The impact of object
identification on efficiency is shown in Fig 12, in
which we varied the number of query keywords. We
chose DBLB because its size is biggest and thus the
difference between the XML document and the
O-tree are significant. Fig 12(a) shows the response
time of XComplete when it searches over the
original and reversed O-trees versus the
corresponding XML documents. It shows that
XComplete runs much faster with the O-trees,
especially when the number of keywords increases.
This is because the size of the O-trees is much less
than that of the XML documents.

Fig 12(b) shows the response time of all compared
algorithms over the two O-trees (original and
reversed). As can be seen, XComplete still
outperforms the other algorithms because based on
our proposed lemma and optimization techniques,
XComplete obtains the optimal cost O(1) for query
mappings of Case 1 and Case 2 and only needs to
use the reversed O-tree for Case 3B. However, the

 0

 10

 20

 30

 40

1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
) XML documents

O-trees

(a) O-tree vs. XML document

 0

 4

 8

 12

 16

1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
) XKSearch

XSEarch
VLCA

XComplete

(b) O-trees for all algorithms

Fig. 12. Impact of object identification on efficiency
[DBLP]

14

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5

R
es

po
ns

e
tim

e
(m

s)

XKSearch
XSEarch

VLCA
XComplete

(a) No. of query keywords (NBA)

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

R
es

po
ns

e
tim

e
(s

ec
) XKSearch

XSEarch
VLCA

XComplete

(b) No. of query keywords (DBLP)

 0

 30

 60

 90

 120

 150

 180

1 2 3 4 5

R
es

po
ns

e
tim

e
(m

s)

XKSearch
XSEarch

VLCA
XComplete

(c) No. of keywords (SIGMOD)

 0

 130

 260

 390

 520

 650

 780

<5 5-20 20-50 50-100 >100

R
es

po
ns

e
tim

e
(m

s)

XKSearch
XSEarch

VLCA
XComplete

(d) No. of matching nodes (NBA)

 0

 100

 200

 300

 400

 500

 600

<0.2K 0.2K-0.5K 0.5K-2K 2K-5K >5K

R
es

po
ns

e
tim

e
(s

ec
) XKSearch

XSEarch
VLCA

XComplete

(e) No. of matching nodes (DBLP)

 0

 60

 120

 180

 240

 300

 360

<3 3-6 6-9 9-12 >12

R
es

po
ns

e
tim

e
(m

s)

XKSearch
XSEarch

VLCA
XComplete

(f) No. of matching nodes(SIGMOD)

 0

 100

 200

 300

 400

 500

 600

20 40 60 80 100

R
es

po
ns

e
tim

e
(m

s)

XKSearch
XSEarch

VLCA
XComplete

(g) Datasize (%) (NBA)

 0

 20

 40

 60

 80

 100

 120

20 40 60 80 100

R
es

po
ns

e
tim

e
(s

ec
) XKSearch

XSEarch
VLCA

XComplete

(h) Datasize (%) (DBLP)

 0

 30

 60

 90

 120

 150

 180

20 40 60 80 100

R
es

po
ns

e
tim

e
(m

s)

XKSearch
XSEarch

VLCA
XComplete

(i) Datasize (%) (SIGMOD)

Fig. 11. Efficiency and scalability evaluation on NBA, DBLP and SIGMOD record datasets

difference is not as much as shown in Fig. 11(b)
because the other algorithms also improve efficiency
when they use the O-trees.
Execution time. Fig. 13 shows the executing time of
finding NCONs and generating outputs for 9 queries
containing 2 − 7 keywords. Low, medium and high
frequencies of keywords are denoted as L, M and H
and correspond to the number of matching objects
between 1-1000, 1000-10000, and above 10000,
respectively. Q(f, k) denotes a query containing k
keywords with frequency f . As shown, the time for
generating outputs is around 24.7% of the time for
finding NCONs. They both increase with the
number of matching objects due to more mappings
to be processed.
The performance with optimization. The running
time of the optimized and the basic algorithm of
XComplete (abbreviated as XComplete and
XComplete-NonOPT) is given in Fig. 14. Let
Q(x, y) denote a y-keyword query containing at least
one query mapping belonging to Case x. As shown,

0

100

200

300

400

500

600

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0

20

40

60

80

100

120

R
un

ni
ng

 ti
m

e(
Se

c)

XKSearch
XSEarch
CVLCA
XComplete

0

50

100

150

200

250

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

 (a)varying # of keywords(NBA) (b)varying # of keywords(DBLP) (c)varying # of keywords(SIGMOD)

0
100
200
300
400
500
600
700
800
900

<5 5-20 20-50 50-100 >100

R
un

ni
ng

 ti
m

e
(m

s)

XKSearch
XSEarch
CVLCA
XComplete

0
100
200
300
400
500
600
700
800

<0.2K 0.2K-
0 5K

0.5K-2K 2K-5K >5K

R
un

ni
ng

 ti
m

e
(S

ec
) XKSearch

XSEarch
CVLCA
XComplete

0

50

100

150

200

250

300

350

<3 3-6 6-9 9-12 >12

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0

100

200

1 2 3 4 5

R
un

n

0

20

40

1 2 3 4 5

R
un

n

0

50

1 2 3 4 5

R
un

n

 (d)varying # of matching nodes (NBA) (e)varying # of matching nodes (DBLP) (f)varying # of matching nodes (SIGMOD)

0

100

200

300

400

500

600

20 40 60 80 100

R
un

ni
nt

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0

20

40

60

80

100

120

20 40 60 80 100

R
un

ni
ng

 ti
m

e
(S

ec
)

XKSearch
XSEarch
CVLCA
XComplete

0
20
40
60
80

100
120
140
160
180
200

20 40 60 80 100

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0
100
200

<5 5-20 20-50 50-100 >100

R
un

0
100
200

<0.2K 0.2K-
0.5K

0.5K-2K 2K-5K >5K

R
un

0

50

100

<3 3-6 6-9 9-12 >12

R
un

n

 (g)varying datasize (%) (NBA) (h)varying datasize (%)(DBLP) (i)varying datasize (%) (SIGMOD)

0

100

200

20 40 60 80 100

R
un

0

20

20 40 60 80 100

R
un

n

0
20
40
60

20 40 60 80 100

R
u

5
10
15
20
25
30
35

R
un

ni
ng

 ti
m

e
(S

ec
) Output Generation

Find NCON

5

10

15

R
un

ni
ng

 ti
m

e
(S

ec
) XComplete XComplete-NonOPT

 (a) (b)

0
5

10
15
20

Q
(L

,2
)

Q
(L

,3
)

Q
(L

,4
)

Q
(M

,2
)

Q
(M

,3
)

Q
(M

,4
)

Q
(H

,2
)

Q
(H

,3
)

Q
(H

,4
)

R
un

ni
ng

 ti
m

e

0

5

Q
(1

,1
)

Q
(2

,2
)

Q
(2

,3
)

Q
(2

,4
)

Q
(3

A
,2

)

Q
(3

A
,3

)

Q
(3

A
,4

)

Q
(3

B
,2

)

Q
(3

B
,3

)

Q
(3

B
,4

)

R
un

ni
ng

 ti
m

Fig. 13. Finding NCON
and generating output

0

100

200

300

400

500

600

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0

20

40

60

80

100

120

R
un

ni
ng

 ti
m

e(
Se

c)

XKSearch
XSEarch
CVLCA
XComplete

0

50

100

150

200

250

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

 (a)varying # of keywords(NBA) (b)varying # of keywords(DBLP) (c)varying # of keywords(SIGMOD)

0
100
200
300
400
500
600
700
800
900

<5 5-20 20-50 50-100 >100

R
un

ni
ng

 ti
m

e
(m

s)

XKSearch
XSEarch
CVLCA
XComplete

0
100
200
300
400
500
600
700
800

<0.2K 0.2K-
0 5K

0.5K-2K 2K-5K >5K

R
un

ni
ng

 ti
m

e
(S

ec
) XKSearch

XSEarch
CVLCA
XComplete

0

50

100

150

200

250

300

350

<3 3-6 6-9 9-12 >12

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0

100

200

1 2 3 4 5

R
un

n

0

20

40

1 2 3 4 5

R
un

n

0

50

1 2 3 4 5

R
un

n

 (d)varying # of matching nodes (NBA) (e)varying # of matching nodes (DBLP) (f)varying # of matching nodes (SIGMOD)

0

100

200

300

400

500

600

20 40 60 80 100

R
un

ni
nt

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0

20

40

60

80

100

120

20 40 60 80 100

R
un

ni
ng

 ti
m

e
(S

ec
)

XKSearch
XSEarch
CVLCA
XComplete

0
20
40
60
80

100
120
140
160
180
200

20 40 60 80 100

R
un

ni
ng

 ti
m

e(
m

s)

XKSearch
XSEarch
CVLCA
XComplete

0
100
200

<5 5-20 20-50 50-100 >100

R
un

0
100
200

<0.2K 0.2K-
0.5K

0.5K-2K 2K-5K >5K

R
un

0

50

100

<3 3-6 6-9 9-12 >12

R
un

n

 (g)varying datasize (%) (NBA) (h)varying datasize (%)(DBLP) (i)varying datasize (%) (SIGMOD)

0

100

200

20 40 60 80 100

R
un

0

20

20 40 60 80 100

R
un

n

0
20
40
60

20 40 60 80 100

R
u

5
10
15
20
25
30
35

R
un

ni
ng

 ti
m

e
(S

ec
) Output Generation

Find NCON

5

10

15

R
un

ni
ng

 ti
m

e
(S

ec
) XComplete XComplete-NonOPT

 (a) (b)

0
5

10
15
20

Q
(L

,2
)

Q
(L

,3
)

Q
(L

,4
)

Q
(M

,2
)

Q
(M

,3
)

Q
(M

,4
)

Q
(H

,2
)

Q
(H

,3
)

Q
(H

,4
)

R
un

ni
ng

 ti
m

e

0

5

Q
(1

,1
)

Q
(2

,2
)

Q
(2

,3
)

Q
(2

,4
)

Q
(3

A
,2

)

Q
(3

A
,3

)

Q
(3

A
,4

)

Q
(3

B
,2

)

Q
(3

B
,3

)

Q
(3

B
,4

)

R
un

ni
ng

 ti
m

Fig. 14. XComplete with
and without optimization

XComplete outperforms XComplete-NonOPT
significantly when query mappings belong to Case 1
and Case 2 because answers are returned with the
optimal cost O(1).

5.5 Quality of the extracted and reversed O-trees
To test the quality of the O-tree extracted from XML
document, we check the accuracy of the object class
and object ID discovery. To test the reversed O-tree,
we computed the ratio of the number of satisfied
object nodes over the total number of object nodes
in the reversed O-tree. The satisfied nodes are those
in the reversed O-tree that satisfy the reversed
schema (object class) which is manually generated.
Quality and time of extracting the O-tree from XML
document and generating the reversed O-tree are
given in Table 6. As can be seen, the quality of the
reversed O-tree depends on the quality of the O-tree
extracted from XML document, which is very high
since our technique can discover object class and
object ID with high accuracy. Once the O-tree is
extracted, the reversed O-tree can be derived
accurately. The cost of these processes is not
expensive since this computation is performed
offline and only once. The computation time is also
acceptable.

6 RELATED WORK

LCA-based approaches for XML keyword search.
XRANK [4] proposes a stack based algorithm to
efficiently compute LCAs. XKSearch [17] defines
Smallest LCAs (SLCAs) to be the LCAs that do not

15

TABLE 6
Quality and time of extracting the original O-tree and

generating the reversed O-tree

NBA DBLP SIGMOD
Quality of the extracted O-tree (%) 98.5 100 100
Quality of the reversed O-tree (%) 98.5 100 100
Time to extract the O-tree (sec) 3.4 687.5 0.8
Time to generate the reversed O-tree (min) 1.3 25.8 0.4

contain other LCAs. Meaningful LCA (MLCA) [9]
incorporates SLCA into XQuery. VLCA [7] and
ELCA [18] introduces the concept of
valuable/exclusive LCA to improve the effectiveness
of SLCA. MaxMatch [11] investigates an axiomatic
framework that includes the properties of
monotonicity and consistency. Although extensive
works have been done on improving the
effectiveness of LCA-based approaches, these works
commonly return incomplete answer sets for an
XML keyword query since they find only common
ancestors but ignore common descendants.
Moreover, an answer returned by these approaches
may be meaningless if LCA nodes are not object
nodes.

Object-oriented approaches for XML keyword
search. XSeek [10] identifies object (entity) based on
* (star) node. However, in many cases, this heuristic
is not hold because (*) node can be multi-valued
attribute. XReal [1] considers object as parent of a
group of attributes, but this cannot distinguish
composite attribute and object. Bao et. al. [2]
assumed that an object is a group of piece of
information. Later, Wu et. al. [16] considered that an
object is the parent node of each property node. An
object in their work does not represents a real entity
in many cases because a group of piece of
information or the parent node of properties node
can be a relationship type, a composite attribute, or
a grouping node. Moreover, none of the above
works considers object ID. Thus, they cannot
discover duplicated objects and suffer the
incompleteness problems as LCA-based approaches.

Output presentation and post-processing.
eXtract [5] generates result snippets for XML
keyword search to help users pick relevant results
quickly. Liu et al. [13] propose techniques for result
differentiation to investigate and compare multiple
relevant results. Liu and Chen [12] cluster the results
according to the roles of keywords, and then by the
root of the subtree. XSeek [10] outputs the data
nodes according to whether they match search
predicates or returned nodes. Although these works
improve the comprehension of answers, there has
been little attention on removing duplicated
answers. Moreover, they do not consider merging
answers to give a complete understanding about the
context to which the set of query keywords can be

mapped.

7 DISCUSSION

Object identification brings valuable advantages both
in terms of handling the returned results as well as
in terms of finding the match. Besides these
advantages in the effectiveness, object identification
also brings benefits in efficiency. This section
discusses advantages of object identification in XML
keyword search.

A1. Improving precision. In XML keyword search,
if a returned node is just an attribute or a value, the
subtree rooted at this node is itself. Intuitively, it is
meaningless because it does not provide any
supplementary information beside the returned node
itself. When object identification is considered, if the
returned node is a non-object node, we can return the
corresponding object node instead. Thereby, the result
is more meaningful because it contains information of
the whole object, not just an attribute or value.
Therefore, the precision of the search is improved
because a returned object node satisfies users more
than an arbitrary returned node.

A2. Improving recall. Existing approaches for XML
keyword search only return common ancestors but
none of them is aware of common descendants. As
discussed in Section 1, common descendants are as
meaningful as common ancestors and should be
returned as answers as well. To find common
descendants, the essential idea is to discover the two
objects appearing at different places in an XML
document are the same. This cannot be done without
object identification. Taking common descendants
into the answer set helps the search provide more
answers for users and thus improves the recall.

A3. Improving user comprehension. Duplicated
answers are from different returned nodes referring
to the same object. Such answers annoy users
because all of them provide the same information.
To filter out duplicated answers, object identification
is necessary to discover the same object.

A4. Improving efficiency. All nodes (object node,
and its attributes and values) describing an object
can be grouped. Each group represents an object.
Among those nodes, object node is the most
important one and should be chosen as the
representative of the group. Therefore, instead of
searching the whole XML document, which is
usually large, we can dramatically reduce the search
space by only consider object nodes (representatives
of objects). These object nodes form the O-tree
discussed in Section 3.1. Suppose that the average
number of attributes for an object class is N , then
the number of all nodes in the XML document is at
least 2 × N times larger than that of object nodes

16

(due to not counting attributes and values). This
extensively reduces the complexity of the search.

The problems of LCA-based approaches, including
meaningless answer, incomplete set of answers and
duplicated answer, are caused by the unawareness of
object semantics and the dependence on hierarchical
structure of answers. Without the semantics of
object, they cannot detect duplicated objects. Thus, if
a query matches parent objects of these duplicated
objects, LCA-based approaches can return only
common ancestors and miss common descendants.
This is a significant drawback because data-centric
XML documents commonly contain a great deal of
such duplicated objects. Object identification enables
us not only to resolve all of these problems but also
to improve the efficiency of the search.

8 CONCLUSION

This paper shows advantages of object identification
in XML keyword search. We introduced the NCON
semantics for XML keyword search, by which an
answer corresponds to an object and the answer set
includes not only common ancestors but also
common descendants. We also proposed an
NCON-based approach to return a more complete
set of meaningful answers by searching over the
original and the reversed O-trees. Our post
processing steps improve user comprehensive by
removing all duplicated answers and merging
answers from the same context. Our optimization
techniques determine the cases which do not need to
use the reversed O-tree and the cases which we can
filter out duplicated answers on the fly to improve
the efficiency. We have implemented all our ideas in
XComplete system and use it for experiment
evaluation. Experimental results showed that
XComplete outperforms LCA-based approaches in
terms of both effectiveness and efficiency. Thus, the
NCON-based approach could be a promising
direction for XML keyword search to return a more
complete set of distinct meaningful and
comprehensive answers.

More broadly, this paper demonstrates the benefit
of object orientation in XML. Without even requiring
full-blown object orientation, merely by recognizing
the concept of objects and object identifiers, we are
able to add substantial semantics to XML
represented data. We showed how this small amount
of additional annotation can greatly benefit keyword
search. In future work, we will explore how other
XML processing can similarly benefit.

REFERENCES

[1] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Efficient XML keyword
search with relevance oriented ranking. In ICDE, 2009.

[2] Z. Bao, J. Lu, T. W. Ling, L. Xu, and H. Wu. An effective
object-level XML keyword search. In DASFAA, 2010.

[3] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
semantic search engine for XML. In VLDB, 2003.

[4] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked keyword search over XML documents. In SIGMOD,
2003.

[5] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet
generation in XML search. In SIGMOD, 2008.

[6] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL:
Semantic annotations for wsdl and XML schema. IEEE Internet
Computing, 2007.

[7] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search
for valuable LCAs over XML documents. In CIKM, 2007.

[8] L. Li, T. N. Le, T. W. Ling, H. Wu, and S. Bressan. Discovering
semantics from XML. TRA3/12, NUS.

[9] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In
VLDB, 2004.

[10] Z. Liu and Y. Chen. Identifying meaningful return information
for XML keyword search. In SIGMOD, 2007.

[11] Z. Liu and Y. Chen. Reasoning and identifying relevant
matches for XML keyword search. In PVLDB, 2008.

[12] Z. Liu and Y. Chen. Return specification inference and result
clustering for keyword search on XML. In TODS, 2010.

[13] Z. Liu, P. Sun, and Y. Chen. Structured search result
differentiation. VLDB, 2009.

[14] L. Ribeiro and T. Härder. Entity identification in XML
documents. In Grundlagen von Datenbanken, 2006.

[15] A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying
xml documents made easy: Nearest concept queries. In ICDE,
2001.

[16] H. Wu and Z. Bao. Object-oriented XML keyword search. In
ER, 2011.

[17] Y. Xu and Y. Papakonstantinou. Efficient keyword search for
smallest LCAs in XML databases. In SIGMOD, 2005.

[18] R. Zhou, C. Liu, and J. Li. Fast ELCA computation for keyword
queries on XML data. In EDBT, 2010.

