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Abstract. It is now possible to collect and share trajectory data for any
ship in the world by various means such as satellite and VHF systems.
However, the publication of such data also creates new risks for privacy
breach with consequences on the security and liability of the stakehold-
ers. Thus, there is an urgent need to develop methods for preserving
the privacy of published trajectory data. In this paper, we propose and
comparatively investigate two mechanisms for the publication of the tra-
jectory of individual ships under differential privacy guarantees. Tradi-
tionally, privacy and differential privacy is achieved by perturbation of
the result or the data according to the sensitivity of the query. Our ap-
proach, instead, combines sampling and interpolation. We present and
compare two techniques in which we sample and interpolate (a priori)
and interpolate and sample (a posteriori), respectively. We show that
both techniques achieve a (0, δ) form of differential privacy. We ana-
lytically and empirically, with real ship trajectories, study the privacy
guarantee and utility of the methods.

1 Introduction

With the increasing pervasiveness of high quality location-acquisition technolo-
gies, geolocation becomes the bread and butter of many applications. In those
applications traditionally concerned with navigation such as shipping, new an-
alytical and operational opportunities are created. However, the possibility to
collect and share trajectory data for any ship in the world by various means such
as satellite and VHF systems creates new risks for privacy breach with detrimen-
tal consequences on the security and liability of the stakeholders. For example,
pirates can use such data to track the frequent routes of ships, and lay ambush to
launch attacks. For this reason, the International Maritime Organization (IMO)
has warned against the publication of ship trajectory1. Moreover, trajectory da-
ta generally contain sensitive information [2]. Any improper publication of such
sensitive data can lead to privacy breach. In fact, as every position is potentially

1 http://www.imo.org/ourwork/safety/navigation/pages/ais.aspx



sensitive, it is critical to protect the privacy of each individual position in the
trajectory. This motivates us to investigate the problem of publishing trajectory
data with differential privacy.

ε-differential privacy was first introduced by Dwork in 2006 [5], and it is now
a widely accepted privacy standard. It requires that the output answer by the
randomized mechanism to a query function be insensitive to any change of a
single element in the underlying database. The insensitivity is controlled by the
parameter ε. For example, a ship passes a specific position for some business
purpose which should not be revealed to public. Meanwhile, its whole trajectory
is published by some website (e.g. [12]). If the publication were ε-differentially
private, then it is of high probability that the published trajectory is the same as
that created from any trajectory excluding this position. Hence it is very difficult
for attackers to obtain truthful information about any position by analyzing the
published trajectories.

The first method for achieving differential privacy is the Laplace mechanism
[7], which adds random noise following the Laplace distribution to the true an-
swers to the query functions. The level of Laplace noise needs to be calibrated
to the sensitivity of the query function. Another solution for differential privacy
is exponential mechanism, proposed by McSherry and Talwar [16]. This mecha-
nism works for all kinds of data sets, such as strings, strategies, or trees. Both of
the two mechanisms perturb the results according to the sensitivity of the query.
The query in our consideration here is the trajectory itself. Its sensitivity is very
high because the velocity of a ship can be very fast. Hence it is very hard to get
good utility by using these two common methods. In order to obtain reasonable
utility, we adopt a relaxed version of ε-differential privacy.

Dwork et al. [6] proposed (ε, δ)-differential privacy, where δ bounds the prob-
ability that ε-differential privacy does not happen. In this paper, we propose two
mechanisms using combination of sampling and interpolation to preserve (0, δ)-
differential privacy. Therefore, our proposal guarantee that the strongest version
of ε-differential privacy happens except for a little probability δ. This privacy
preserving is obtained by the sampling stage. The interpolation stage is designed
to deliver trajectories with good utility. These two stages can be in any order. We
also compare a priori sampling mechanism and a posteriori sampling mechanism.

Contribution: In this paper, we consider the problem of publishing trajecto-
ries via the differential privacy model. The key challenge is to improve the utility
of the mechanism while preserving privacy level. Our proposed mechanisms are
able to achieve the strongest differential privacy except a small probability. We
comparatively evaluate the performance of this mechanism both qualitatively
by illustrating the publication of real ship trajectories and quantitatively by
measuring the error between the published and original trajectory.

– We propose a priori sampling mechanism (SFI2) and a posteriori sampling
mechanism (IFS3) to publish trajectories with (0, δ)-differential privacy.

– We compare these two mechanisms analytically and empirically.

2 SFI stands for Sampling First and Interpolation.
3 IFS stands for Interpolation First and Sampling.



– We conduct numerical experiments to evaluate the utilities of SFI and IFS.
The numerical results show that the SFI mechanism has better performance.

The rest of this paper is organized as follows. Section 2 reviews related
work. Formal definitions and problem statement are introduced in Section 3.
We present our two sampling-based differentially private mechanisms in Section
4. We report the numerical results in Section 5 and give the final conclusion in
Section 6.

2 Related Work

Generally there are mainly two different types of trajectory publishing. One
type aims to publish a group of trajectories and considers each trajectory as one
individual record. The other type considers one trajectory as a database and
each position in the trajectory as one individual record.

Recent privacy-preserving technology for the first type starts with the con-
cept (k, δ)-anonymity proposed by Abul et al.[1]. The intuition is to disturb the
trajectory so that at least k many different trajectories co-exist in a cylinder with
radius δ. Chen et al.[4] were among the first to connect trajectory publishing and
differential privacy. They proposed a data-dependent sanitization mechanism by
building a noisy prefix tree according to the underlying data. The most recent
work by Ho[11] proposed a differential privacy mechanism for mining trajectory
data. The approach adds Laplace noise with respect to the smooth sensitivity of
queries.

To our knowledge, not much work has been done on the second type which
treats each individual trajectory as a database. In fact, to a vehicle owner, every
position of the trajectory could be potentially sensitive. The privacy of each
position can be preserved by sampling. This is the focus of our paper. Besides,
we use interpolation to retrieve the information of sampled-out positions.

The interpolation method in our proposal is a standard and classic one, which
is widely used in robot route planning. A simple task is to find smooth enough
paths passing through a sequence of given waypoints. Sometimes additional re-
quirements on velocity and direction at waypoints are involved. A classic tech-
nology to achieve this is by using Bézier spline. To obtain a continuous curve
matching given direction and velocity at waypoints, cubic Bézier was applied
in [15], [18], [10]. Cubic Bézier curve requires two control points exclusive of
endpoints and can keep continuous curvature from the beginning to the end.

This application of cubic Bézier spline fits our purpose of interpolation very
well. We employ this method and combine it with sampling to publish privacy-
preserving trajectories. In many applications, the data to be sanitized are col-
lected via a simple random sampling from the underlying population.

The random sampling method would allow others to study the statistical
patterns about the entire population based upon the collected sample data, e.g.,
averages, variances, clusters etc. Intuitively, a simple random sampling already
provides certain amount of privacy guarantees for the underlying population. In



[3], Chaudhuri and Mishra have shown that a simple random sampling mecha-
nism (without any further sanitization) does not preserve ε-differential privacy,
and under certain conditions it may guarantee the probabilistic differential pri-
vacy that the ε-differential privacy is preserved with probability at least 1 − δ.
These results were further modified and extended in [13]. In [17], in order to add
smaller amount of instance-based noise than the worst-case noise determined by
the global sensitivity, Nissim et al. proposed a sample and aggregate framework
by replacing the query function with a related function whose smooth sensitivity
is low and efficiently computable. In [14], Li et al. proved that applying random
sampling, as a pre-sampling step, to k-anonymity methods can preserve (ε, δ)-
differential privacy. In [9], Gehrke et al. introduced a new definition of privacy
called crowd-blending privacy, which is a relaxation of differential privacy. The
authors show that the crowd-blending mechanism, with a pre-sampling from the
underlying population, can both guarantee differential privacy and the stronger
notion of zero-knowledge privacy.

In the above mentioned random sampling results, only the sampled data
would be released to public for statistical studies. However, in order to monitor
the ship’s navigation, we still would like to estimate the ship’s possible positions
in the time interval between any two sampled positions. Significant events, in-
cluding illegal dumping of waste materials and oil spill, may happen in some
time interval. Hence it is of great importance to infer the ship’s positions during
the navigation. Our proposal in this paper can achieve (0, δ)-differential privacy
for small δ. Moreover, a large number of experiments conducted on real ship
trajectories demonstrate good utility of our mechanisms.

3 Preliminaries

In this section, we present the formal definition of differential privacy and Bézier
curve, ending with the model of our problem.

3.1 Differential Privacy

Differential privacy has been widely used to protect the privacy of the individual
participants while providing useful statistical information about the underlying
population. A mechanism satisfies differential privacy if the addition or removal
of a single database element does not significantly change the probability of any
outcome of the mechanism.

Definition 1 (ε-differential privacy [5, 7]) A randomized mechanism K gives
ε-differential privacy if for every two databases D and D′ differing in at most
one row, and for every S ⊆ Range(K)

Pr[K(D) ∈ S] ≤ eε × Pr[K(D′) ∈ S].

Dwork et al. [6] proposed (ε, δ)-differential privacy, which is a relaxed version
of ε-differential privacy that allows privacy breaches to occur with a very small
probability controlled by δ.



Definition 2 ((ε, δ)-Differential privacy[6]) A randomized mechanism K gives
the (ε, δ)-differential privacy if for every two databases D and D′ differing in at
most one row, and for every S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S] + δ.

Note that if δ = 0, (ε, 0)-differential privacy is ε-differential privacy.

Remark 1 From the definition, we can see that the strongest ε-differential pri-
vacy happens when ε = 0. Normally this level of privacy is very difficult to
achieve with reasonable utility. However, it may happen for certain probability.
This is what (0, δ)-differential privacy mean, where the probability of privacy
breach is no greater than the constant δ. Consequently, (0, δ)-differential privacy
is meaningless when δ = 1. Meanwhile, in the definition of ε-differential privacy,
the privacy breach is measured by the ratio between the probabilities of outputting
the same result with two neighboring inputs. Generally it is unfair to compare
their privacy strengths.

3.2 Bézier Curve

A Bézier curve is a smooth curve determined by a sequence of control points.
Suppose there are (n + 1) points P0, ..., Pn. The first and last points are the
endpoints of the curve. The other points are attractors of the curve. In other
words, the curve should be close to these points, but generally does not pass
through them.

Linear Bézier curves In the case of n = 1, the Bézier curve is just a straight
line from P0 to P1:

B(t) = (1− t)P0 + t · P1, t ∈ [0, 1].

Quadratic Bézier curves In this case, we are given three points: P0, P1 and
P2. Then we have two linear interpolations for P0, P1 and P1, P2, respectively.
The Bézier curve for these three points is a linear interpolation of these two linear
interpolations as follows, B(t) = (1− t)[(1− t)P0 + tP1] + t[(1− t)P1 + tP2], t ∈
[0, 1].

A simple rearrangement gives us

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, t ∈ [0, 1].

The derivative of this Bézier curve is

B′(t) = 2(1− t)(P1 − P0) + 2t(P2 − P1).

This means that the direction at the starting point P0 is heading to P1, and
the direction at the ending point P2 is from P1.



Generalization The Bézier curve for an arbitrary n can be constructed by
recursion. Suppose there are (n+ 2) points P0, ..., Pn+1. Let BP0...Pn

denote the
Bézier curve for P0, ..., Pn. Then the Bézier curve for P0, ..., Pn+1 is

B(t) = (1− t)BP0...Pn(t) + tBP1...Pn+1(t), t ∈ [0, 1].

3.3 Problem Statement

The simplest form of a trajectory is a sequence is positions on the 2-dimensional
plane representing the moving path of a vehicle. To make our model more re-
alistic, we can aggregate information as much as we want. In this paper, we
consider trajectories with the direction, velocity and timestamp at every posi-
tion. For simplicity, we assume that the information of the starting position and
the terminal position is known to public.

Definition 3 A trajectory T is a sequence 〈(P0, θ0, v0, t0), . . . , (Pn, θn, vn, tn)〉,
where Pi is the coordinate of the i-th position, θi is the direction and vi is the
velocity.

After we deliver an output for an input trajectory, we have to measure the
utility of our delivery. There are many ways to measure the distance of two
trajectories, based on different intuitions. Two measures are adopted here for
two purposes.

Definition 4 Given two trajectories T and T̃ , the MAX distance between them
is

MAX(T, T̃ ) = max{||Pi − P̃i|| : 0 ≤ i ≤ n}.

The MAX distance measures the maximum of the distance between positions
with the same timestamp. Consequently, given the output, a timestamp ti and
the MAX distance r, it is guaranteed the real position Pi is in the circle cen-
tered at P̃i with radius r. To calculate the MAX distance, the two trajectories
must have the same timestamps. Since the goal of this paper is to publish a
perturbed trajectory T̃ while preserving (0, δ)-differential privacy, we have to
define neighboring trajectories to be with the same timestamp sequence.

Definition 5 Two trajectories T and T ′ are neighboring if they have the same
timestamp sequence and differ at exactly one tuple.

Alternatively, one may be interested in the similarity between T and T̃ . The
Dynamic Time Wapping distance (DTW) is an ideal to fulfill this task. The
Dynamic Time Warping (DTW) algorithm defined recursively as:

DTW(i, j) =


0 if i = −1 and j = −1,
+∞ else if i = −1 or j = −1,

dist(Pi, P̃j) +min( DTW(i− 1, j), otherwise
DTW(i, j − 1),
DTW(i− 1, j − 1))



where dist(Pi, P̃j) is the cost function between the two points. We choose to

define that function as the Euclidean distance between Pi and P̃j . The algorithm
consists in walking along both trajectories, pairing points between the both of
them, but allowing that for the next step only one of the trajectories is walked
to its next point. Therefore a point can be paired with one or more consecutive
points on the other trajectory. This allows us to measure the similarity between
both trajectories’ pattern.

4 Sampling-based Differentially Private Schemes

In this section, we shall present two differentially private schemes to protect an
individual ship trajectory. Both schemes are based on sampling and interpola-
tion. Our first scheme is an Apriori Sampling Scheme which first draws a sample
from the trajectory data (i.e., by sampling each position with a given proba-
bility) and then applies interpolation to construct the published trajectory over
the sampled data points. The second scheme, known as Aposteriori Sampling
Scheme, first interpolates a smooth curve over the trajectory data points, and
then sample points on this curve. In the following, we shall first describe the
interpolation mechanism, then present the two mechanisms.

To analyze the privacy of our mechanisms, we first recall the composition
lemma proved by Dwork et al. [8],

Lemma 1 The class of (ε, δ)-differentially private algorithms satisfies (kε, kδ)-
differential privacy under k-fold adaptive composition.

As we shall see, the interpolation method we are using is deterministic. Hence,
the privacy is fully taken care of by the sampling stage.

4.1 Interpolation

The aim of interpolation is to recover the information of sampled-out position-
s. Therefore, a well-chosen interpolation method would improve the utility. A
classic method of route planning is employed here.

Suppose we have the information for starting position (Ps, θs, vs) and the
end position (Pe, θe, ve). Suppose the length of time interval is t∗. To match the
direction at Ps, we set an additional control point P1 along the direction of θs
with distance ls from Ps. Similarly, another additional control point P2 is chosen
for Pe. These four points will form a cubic Bézier curve which automatically
matches the directions at these two endpoints. Moreover, to match the velocity,

it must be the case that ls =
vs · t∗

3
and le =

ve · t∗

3
. Hence,

P1 = Ps +
vs · t∗

3
(cos θs, sin θs) and P2 = Pe −

ve · t∗

3
(cos θe, sin θe).

Then the Bézier curve between 0 and t∗ controlled by Ps, P1, P2 and Pe is

B(t) = (1− t

t∗
)3 · Ps + 3(1− t

t∗
)2 · ( t

t∗
) · P1 + 3(1− t

t∗
) · ( t

t∗
)2 · P2 + (

t

t∗
)3 · Pe.



It is easy to check ||B′(0)|| = vs and ||B′(t∗)|| = ve as required.

Algorithm 1: Cubic Bézier Interpolation (CubB)

1 Input: Ps, Pe, θs, θe, vs, ve, t
∗ and 〈t1, . . . , tj〉.

2 Compute P1 and P2.

3 for i = 1 : j do
4 Let Pi = B(ti);
5 Let vi = ||B′(ti)||;
6 Let θi = Argument(B′(ti));

7 Output 〈(Pi, θi, vi) : 0 < i ≤ j〉.

Remark 2 In some circumstances, loops appear in the interpolation, which may
not be an ideal result. The reason for loops to occur is that the Bézier curve
interpolation implies the acceleration is polynomial in time and the vehicle may
take a sharp turn which cannot be modelled by a polynomial acceleration. If loops
is supposed to be avoided in this case, one can assume there are sudden changes
of the velocity at the two endpoints and interpolate by using a quadratic Bézier
curve.

4.2 A Priori Sampling

Given a trajectory T and a privacy parameter δ, we first compute an integer
k = d 1δ e. Then we partition T into groups with k positions. By sampling an
integer l from {1, ..., k} uniformly, we keep the l-th position in each group and
remove all other positions. Then we interpolate positions removed by using cubic
Bézier interpolation.

Theorem 1 The mechanism SFI is (0, δ)-differentially private.

Proof. Let T and T ′ be two neighboring trajectories differing only at the w-
th position. By Lemma 1, it suffice to prove the process to generate the set of
unchanged positions U is (0, δ)-differentially private.

From the mechanism, we can see that U = U ′ if the w-th position is removed,
which is equivalent to w 6≡ l(mod k). Since l is uniformly sampled from {1, ..., k},
Pr[w ≡ l(mod k)] = 1

k ≤ δ. Hence Pr[U 6= U ′] ≤ δ. Therefore, the process to

generate the set of unchanged positions U is (0, δ)-differentially private.

In fact, the behaviour of the privacy parameter δ is dependent on the number
of positions in the underlying trajectory. To achieve the (0, 0)-differential privacy
where δ = 0, no intermediate positions can be sampled, and the output is based
on the interpolation of the two endpoints only. The next strong (0, δ)-differential



Algorithm 2: Remove and interpolate (SFI)

1 Input: T = 〈(P0, θ0, v0, t0), . . . , (Pn+1, θn+1, vn+1, tn+1)〉 and δ.

2 Let k = d 1
δ
e, (x̃0, ỹ0) = (x0, y0) and (x̃n+1, ỹn+1) = (xn+1, yn+1).

3 Sample an integer l from {1, ..., k} uniformly.
4 for i = 1 : n do

5 if i ≡ l(mod k), then (P̃i, θ̃i, ṽi) = (Pi, θi, vi);

6 else (P̃i, θ̃i, ṽi) = (−);

7 Collect all the unchanged positions U = 〈P̃m0 , . . . , P̃mr 〉.
8 for i = 1 : r do

9 Interpolate the removed positions between P̃mi−1 and P̃mi and store them

in T̃ by Alg 1;

10 Output T̃ = 〈(P̃0, θ̃0, ṽ0, t0), . . . , (P̃n+1, θ̃n+1, ṽn+1, tn+1)〉.

privacy happens for δ = 1
n , where only one intermediate position is sampled. In

other words, if the input δ is between 0 and 1
n , then the mechanism is the same

as that for δ = 0. Generally, a non-trivial δ is one element of the discrete set
{ kn : k = 0, . . . , n}.

4.3 A Posteriori Sampling

In the SFI mechanism for small δ, few intermediate positions are sampled for
the interpolation. In other words, much information between two consecutive
waypoints is lost. Hence, the interpolation may not reflect the real trajectory
very well. An alternative way to avoid this is to do interpolation first and then
sample a sub-trajectory. Since all information is kept in the interpolation stage,
the sampled sub-trajectory will be more similar to the real one.

Let T = 〈(Pi, θi, vi, ti)i=0,...,n+1〉 be an input trajectory. The first step is to
interpolate the curve in each time interval by using the cubic Bézier interpolation.
Let B(t) be the resulted Bézier-spline from t = t0 to t = tn+1. Then we sample
m timestamps uniformly from these n many time intervals, say t′1, . . . , t

′
m. So

the intermediate trajectory Tmid is 〈(B(t′i), B
′(t′i))i=1,...,m〉 with two endpoints,

where B′(t′i) represents the direction and velocity at t′i.
So far, Tmid is an alternative version of T . It can be proved the process to

output Tmid is (0, δ)-differentially private by setting m ≤ ln(1− δ)
ln(1− 2

n )
. However,

Tmid and T may not have the same timestamps. To do the comparison, we have
to interpolate the positions at the timestamps of T .

Theorem 2 The mechanism IFS is (0, δ)-differentially private.

Proof. Let T and T ′ be two neighboring trajectories differing only at the w-th
position. By Lemma 1, it is sufficient to prove the process to generate Tmid is
(0, δ)-differentially private.



Algorithm 3: Remove and interpolate (IFS)

1 Input: T = 〈(P0, θ0, v0, t0), . . . , (Pn+1, θn+1, vn+1, tn+1)〉 and δ.

2 Let m = b ln(1−δ)
ln(1− 2

n
)
c.

3 Interpolate B(t) from t = t0 to t = tn+1 by Alg 1.
4 for i = 1 : m do
5 Sample a time interval index (TIi) uniformly from {1, . . . , n};
6 for i = 1 : m do
7 Sample a timestamp t′i uniformly from the TIi-th time interval;

8 Compute Tmid from B(t) and the timestamp sequence 〈t0, t′1, . . . , t′m, tn+1〉.
9 Interpolate B̃(t) from t = t0 to t = tn+1 according to Tmid by Alg 1.

10 Compute T̃ from B̃(t) and the timestamp sequence 〈t0, t1, . . . , tn+1〉.
11 Output T̃ = 〈(P̃0, θ̃0, ṽ0, t0), . . . , (P̃n+1, θ̃n+1, ṽn+1, tn+1)〉.

From the mechanism, we can see that Tmid 6= T ′mid only if some sampled
timestamp falls in the w-th or the (w + 1)-th time interval. The probability for
this to happen is

Pr[∃i(TIi = w) ∨ (TIi = w + 1)] = 1− (1− 2

n
)m ≤ δ.

Hence the mechanism is (0, δ)-differentially private.

Generally, a non-trivial δ is one element of the discrete set {1 − (1 − 2
n )m :

m ∈ N}.

Remark 3 In fact, Line 11 and Line 12 are not necessary in Algorithm
3. The only reason for adding these two operations is to compute the MAX
distance from the input trajectory, which requires the output trajectory has the
same timestamp sequence as the input does. It is obvious that these additional
operations would reduce the utility. Hence, if the utility measure does not require
the same timestamp sequence between input and output such as DTW distance,
then Line 11 and Line 12 can be removed.

5 Experimental Results

In order to compare our two algorithms, we use real trajectories of ships captured
in the Singapore Straits during one hour (2012-09-09 from 08:00 to 09:00 UTC
time). Because of space constraint, we have selected to present results obtained
from two representative trajectories with different shapes, one from a tug boat
(Ship 1) and one from a cargo ship (Ship 2). As a summary, we present the
average error for these two mechanisms on all real trajectories we have. For each
trajectory we apply a time filter; we keep the first point and then each successive
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point must be at least 30 seconds apart from the previous one. We then apply
both algorithms with different values of δ.

In the IFS mechanism, the value of δ is determined by the number of points
n of the original trajectory and by a number m of samples we want to randomly
generate. We generate the values of δ corresponding to m from 1 to n. Since the
SFI mechanism has no such restriction, we can then compare both mechanisms
with the exact same δ value.

The SFI mechanism can be analyzed completely, as for a given δ we can have
only k different outputs since we sample a natural number between 1 and k.
On the other hand, the IFS mechanism cannot be analyzed for each case since
we sample real numbers, so for each value of δ we generate 100 trajectories and
choose to present one randomly. We then compute for both mechanisms the
average distance between the original trajectory and the published trajectories,
according to the MAX and DTW distances.



For the two selected representative ships, Figure 1 reports the average MAX
error of the SFI and IFS mechanisms, and Figure 2 reports the average DTW
error of the SFI and IFS mechanisms. Figure 3 reports the average errors for two
mechanisms on all real trajectories we have, where each mechanism generates
100 trajectories for each real trajectory.

All these figures show a similar trend. The utility of SFI mechanism is better
when δ is small. This is mainly because there are two interpolation stages in the
IFS mechanism, where the first one generates a curve very close to the real
trajectory, and the second outputs a trajectory with given timestamps. Smaller
value of δ implies worse accuracy of the second interpolation. When δ reaches
some value, the utility of IFS mechanism becomes no worse than that of SFI
mechanism. This is because the number of sampled waypoints m goes to infinity
while δ increases to 1, which will provide more accurate information. Hence, the
IFS mechanism would be chosen for high toleration of privacy breach.
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Another consequence of Figure 1 and Figure 2 is that the SFI mechanism
works better for the trajectory of ship 1 with almost all δ. This behavior is
common in our experiments and the trajectory of ship 1 is representative. Hence,
it is reasonable to conclude that the utility of SFI for not-so-smooth trajectories
is better than that of IFS mechanism.

We can now illustrate the end result with the trajectories of two selected
ships in Figure 4 and Figure 5. They illustrate the original trajectories together
with their published trajectories with IFS and their published trajectories with
SFI, respectively. We observe on these examples that both methods generate
trajectories similar to the original trajectory and that SFI generates trajectories
that are smoother and closer to the original one. This is exacerbated when the
original trajectory is less smooth as in Figure 5.
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Fig. 4. Original trajectory of Ship 1 with results published by two mechanisms (δ = 0.1)

6 Conclusion

The publication of the accurate trajectory of a ship is a potential menace to
privacy that may threaten the security or engage the liability of the ship and its
stakeholders.

We proposed two mechanisms for the publication of ship trajectories with dif-
ferential privacy guarantees. The two mechanisms use a combination of sampling
and interpolation to create a perturbation. The first mechanism, SFI, follows
an a priori approach in which a trajectory is sampled and interpolated. The
second mechanism, IFS, follows an a posteriori approach in which a trajectory
is interpolated, sampled (and possibly interpolated and sampled again).

We showed that both SFI and IFS are (ε, δ)-differentially private with ε =
0. We analytically and empirically compared the two mechanisms and showed
that both of them are effective in publishing realistic trajectories similar to the
original trajectory. We showed that the utility of SFI is better than that of IFS
for smaller values of δ and not-so-smooth trajectories.
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Fig. 5. Original trajectory of Ship 2 with results published by two mechanisms (δ = 0.1)

We are currently fine tuning the general approaches discussed in this paper
to take care of special cases such as the one discussed in Remark 2. We are
also studying the extension of our techniques to take into account prescribed
constraints such as further speed, acceleration and other maneuvering limits
and forbidden areas.
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