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Abstract. Causal knowledge is crucial for facilitating compeakion,
diagnosis, prediction, and control in automateds@eing. Active learning in
Bayesian networks involves interventions by manifugaspecific variables or
their interactions, and observing the patternshainge over the other variables
to derive causal relationships for knowledge disrpyv In this paper, we
propose a new active learning approach that suppateérventions with node
selection. Our method admits a node selection riitebased on non-
symmetrical information entropy and a stop criteribased on minimizing
structure entropy of the resulting networks. We meix@ the technical
challenges and practical issues in developing ®ffecnode selection and
stopping criteria in our method. Experimental resun a set of benchmark
Bayesian networks are promising. The proposed methagplicable in many
real-life applications where multiple instances siraultaneously sampled as a
data set in each active learning step.

Keywords: Bayesian networks, active learning, interventiom-spmmetrical
entropy, node selection, stop criterion

1 Introduction

Causal knowledge is important for comprehensioaguibsis, prediction and control
in automated reasoning. Causal Bayesian networks extensions to Bayesian
networks that explicitly and concisely represenised knowledge as variables and
their directed graphical relationships in uncer@amains [11]. This research focuses
on learning causal knowledge from data that comedp to learning the structure of
causal Bayesian networks for knowledge discoverydjor research challenge is to
learn causal knowledge from both observational aimtierventional data.
Observational data are derived from passive obSensawhen the underlying system
evolves autonomously. Interventional data are oteserwhen some variables are
actively manipulated to fixed values, while othariables evolve autonomously
according to the underlying system mechanisms; slath directly reflect the effects
of the active manipulation of certain variablestioa rest of the system.



Most of the existing Bayesian network structurerné@gey methods deal with
observational data [1, 6]. Recently, some new iegrmethods have been proposed
to combine observational data with interventionatad[2, 10, 14]. Cooper and Yoo
[2] identified the possible assumptions for proligbupdates with both observational
and interventional data and proposed a method tataepthe probabilities with the
combined data. Tong and Koller [14] developed aivadearning method to guide
the interventions to collect new interventionalad&r further structure probability
updates. Eberhardt et al. [5] proved that, undealid¢donditions with causal Markov
assumption and faithfulness assumption (and idéstiltlitions), the number of
interventions required to identify the causal ielahips amongN variables is
N -1 when only one variable can be manipulated eacl,tiamd the number of

interventions islog, N when multiple variables can be manipulated sinmgitaisly.

Meganck et al. [9] assumed that the correct corapgbattial directed acyclic graphs
(CPDAGS) can be learned from the observational daththe directions of the un-
directed edges in the CPDAGs can be determinedintighventional data.

Active learning in Bayesian networks involves intamtions by manipulating
specific variables or their interactions, and obisey the patterns of change over the
other variables to derive causal relationshipskisowledge discovery. In previous
active learning work [10, 14], the interventionatal are assumed to include one
instance at each active learning step. In this ywaekconsider a new scenario: a data
set of multiple instances is collected when ongatée is manipulated at each active
learning step. Such experiments arise in manylifeakpplications. For instance, in
measuring protein expression levels with flow cygby in biology, the expression
levels of some proteins (as variables) can be\atexd and their effects on the
expression levels of other proteins are observerh fmany cells at a time, and the
observations of protein expression levels from celéare the values in one instance
[4,12].

With an interventional data set, we can determime ¢ausal influences of the
manipulated variables on other variables basedehieory otausality with agency:
manipulating causes can change the effects butvicet versa [15]. In practice,
marginal distributions of the variables are useddé&tect causal influence. If the
marginal distribution of variableB changes when variabl@\ is manipulated to
different values, we say that variable precedes variable B in causal ordering,
variable A is a cause of variabld, and variableB is an effect of variableA.

There are different definitions of intervention: riget intervention, imperfect
intervention [8, 13], and uncertain interventior]. [Different types of intervention
have different effects on the Bayesian networkcstme learned from data. We will
focus on perfect intervention in this work. When wanipulate a variable under
perfect intervention, the manipulated variable takbe value we specify in the
intervention. This is what we mean by manipulafiothe general sense.

Our objective is to learn the causal Bayesian néktvetructure that achieves the
specified structure accuracy with a minimal numioérinterventions, when the
interventional data comprise of a data set at eatlie learning step. Specifically, we
address the following questions in the active leayrfor causal Bayesian network
structure: 1) What is a good criterion for selegtthe nodes for new interventions,
with respect to “correctness” in terms of entropyhe learned structure? 2) What is
the effect of the stop criterion on the learnedatire in the learning process? and 3)



What is the probability of a positive finding inetlnext immediate intervention, given
the constraint that only one more intervention lbamperformed?

We introduce a new active learning algorithm fousa Bayesian networks with a
node selection criterion based on a measure ofsgommetrical entropy and a
learning stop criterion based on the structure opitrof the resulting Bayesian
networks. The definition of the non-symmetricalrepy is motivated by the non-
symmetrical nature of the interventions. We exantireeffectiveness and efficiency
of the proposed method on identifying causal retethips based on a set of
benchmark Bayesian networks; we also compare thatsewith some other major
methods involving node selection with symmetricair@py, random node selection,
and observational data only.

2 Method

2.1 Causal Bayesian networks

A causal Bayesian network [11] is a directed acygliaph (DAG), in which each
node corresponds to a distinct variabje in the domain, and each edge corresponds

to a causal influence from the parent variabléntochild variable. The parent variable
of an edge is the variable at the tail of the e@dge, the child variable is the variable
at the head of the edge. The meaning of “causatairsal Bayesian networks is from
the interpretation of the edges in the model: Thasal influence from the parent
variable to the child variable means that, whenmamipulate the parent variable by
fixing its state to a specific value, we can obeethie change in the probability
distribution of the child variable. If there is nausal influence from one variable A to
another variable B, there will be no edge from afalé A to variable B. Moreover,
when one variable is manipulated, the causal infleerelationship between other
variables will not change, and the conditional @tobty of the child variable given
its parents will be the same. Under the causal Madssumption, each variable is
independent of its ancestors given the valuessgbatrents. The joint probabilities in
the domain can be represented as

P(XpX,) =[], pCX; [ Pa(X;))
where Pa(X,) denotes the parents ()fi in the causal Bayesian network. In this

paper, we will use “node” and “variable” interchaadly. A good definition of causal
Bayesian network and its properties can be fouriRearl’s book [11].

2.2 Activelearning

Active learning is different from the ordinary pagslearning. Passive learning works
with a set of readily available data; the data da¢s not change in the learning
process. In active learning, we can sample new itathe learning process. In the
active learning of causal Bayesian networks [10], 1de process starts with an



available data set, and the probabilities of thgesdare estimated from the available
data (all observational and interventional datajthvihe edge probabilities, a node is
selected with a certain criterion for interventiamd a new instance is collected in
order to maximally reduce the expected structuropy. The process can be
repeated until the goal is reached.

Estimating the edge probabilities is an importaart pf the active learning process.
For every pair of variables, three possible sitrai between them are usually
considered: an edge from to B (A - B), an edge fromB to A (A~ B), or
no edge betweerA and B (AOB). The probabilities of the edges given the
available dat® and domain knowledd¢ are defined as

Pr(A - B|D,K)= > Pr(G|D,K)
A- BOE(G)
where prG|D,K) is the probability of the Bayesian netwdgkgiven the dat®

and domain knowledgk, andE(G) is the set of edges in Bayesian netw@rldn the
following discussionsD and K will be omitted for brevity. The probabilities of
A~ B and AOB are similarly defined as the probability ¢f . B. The edge
entropy is defined as in [14]:

H<(AB) =-p(A - B)logp(A - B)
~ p(A ~ B)logp(A ~ B)

- p(A0B))log p(AB)
The structure entropy of Bayesian netw@rls defined as
Hs(G) =D Hs(AB)
AB

In the previous work [14], the edge probabilitiee astimated approximately with
Markov Chain Monte Carlo (MCMC). In contrast, wdieste the edge probabilities
with an exact method proposed by Koivisto [7], siitise exact edge probabilities can
provide more information for node selection. Koiwigitilized the intuition that the
order of the parents of a variable is irrelevanthi variable’s probability estimation,
and applied forward and backward dynamic progrargnaind fast truncated Mobius
transform to estimate all the edge probabilitiesg2) time, wheren is the

number of variables in the domain. When the intetiemal data is combined with
observational data, the instances with the variahtiervened will not be used in
calculating the probability of the family with thetervened variable as the child (the
assumptions and the method can be referred to Coapg Yoo's work [2]).
Koivisto’'s exact method can be applied to domairithva moderate number of
variables (around 25). Our intention here is teselp examine the performance of an
exact estimation method for the proposed node tsetecriterion.

2.3 Seecting nodesfor new interventions

In the previous work [14], node selection for intEmtion is based on the expected
posterior loss of the structure entropy. The exgepiosterior loss for all the possible
node selection needs to be estimated, and subdéguere node is selected for

intervention to collect a new interventional instan



We consider the situation where a data set wiltdiected when one variable is
under one intervention. The interventional datavedlt show whether the changed
value of the manipulated variable will affect theIpability distributions of the other
variables. The change from the probability distiitms of the other variables can
provide causal information between the intervergiomariable and all the other
variables, and can help reduce the uncertainth@ftausal relationships between the
interventional variable and all the other variables

We choose the node with maximum node uncertaintynfervention because it is
computationally not feasible to calculate the expegosterior loss of the multiple
instances in the entire data set at each stepndtie uncertainty between a variable
and all the other variables can be estimated umetedifferent conditions:

Uys(A) =" (-Pr(A - B) *log(Pr(A — B) - (L—Pr(A - B))*log(L- Pr(A - B)))
B 1)

Us(A) =D H(AB) (@)

The first caseU NS considers two conditions between variabde and the other

variables: the probabilities whether there is ageeflom A to other variables or not.
The second caseJ_ considers the three possible conditions betweerabla A

and the other variablesn -~ B, A - B, and AOB. The second case is generally
used in Bayesian network structure leaning.
We refer toU,, as non-symmetrical entropy and U, as symmetrical entropy.

The definition of the non-symmetrical entropy istimated by the non-symmetrical
nature of the intervention. In an intervention, @@ manipulate only one variable in
a pair of variables to derive the causal informatietween the pair: whether or not
the manipulated variable affects the non-manipdlatariable. We cannot derive
causal information from the non-manipulated vaeatol the manipulated variable. If
both variables are manipulated, we cannot derivdul€ausal information between
this pair of variables from the interventional data

Besides examining the effects on node selectioh thi¢se two measures, we also
consider random node selection for intervention aatkction using observational
data only (i.e., there is no interventional varéisl new data collection at each step of
the active learning process).

24  Stop criteriafor causal structurelearning

Another main problem in applying Bayesian netwagirhing for causal knowledge
discovery in practice is to decide when to stop lgerning process— when do we
think that the learned causal Bayesian networkosdgenough? The intuitive way is
to choose a fixed number of interventions as tobe stiterion. The disadvantage of
this approach is that there is no guarantee onqgttadity of the learned Bayesian
network structure. We propose to use certain “atadt@@’ entropy of the learned

structure as the stop criterion. The ideal entrofthe learned structure is 0; however,
it is difficult in practice to reach the ideal catioh. We consider the effects of the



different values of entropy of the learned struetas the stop criteria on the accuracy
of the learned structures.

3 Experiments

The proposed method has been tested in experimetiisthe same benchmark
Bayesian networks as those reported in Tong anteK®lwork [14]: Cancer network
(as shown in Figure 1), Asia network, and Car netwdhere are 5 variables in
Cancer network, 8 variables in Asia network and VB?iables in Car network
respectively. We conducted the simulations underTMAB?! (version 7) with the
support of the BDAGL package [3]. The machine used Dell OptiPlex GX280
desktop with 1 Gigabyte memory and 3GigaHz Intekcpssor.

The experiment setup is as follows:

1. Choose a Bayesian network from Cancer network, Amtwork, or Car
network as the ground truth Bayesian network;

2. Sample an observational data set with 200 instafroes the ground truth
Bayesian network;

3. Estimate the edge probabilities and structure pmtrwith the available data
(and domain knowledge, if any);

4. Check the stop criterion. If the stop criterionstisfied, stop the learning
process; otherwise, continue;

5. Select one node for intervention based on the nodertainty measures from
non-symmetrical entropy, symmetrical entropy, randoode selection for
intervention, or without interventional node;

6. Generate a new interventional data with 200 ingarfoom the ground truth
Bayesian network with the selected interventioraalables; return to step 3).

In the experiments, the edge probabilities areregéd with the exact method from
Koivisto [7]. The uniform prior of Bayesian netwoskructures is used. We tested two
stop criteria in our experiments - the number ¢ériventions or the structure entropy
of the learned Bayesian networks. In the lattex,rttaximum number of interventions
is set to 50. This is because we had observedhbatructure entropy of the learned
Bayesian network would not reach certain small e@slwith symmetrical entropy,
even if a very large data set is sampled. The aizthe interventional data is 200
instances in each intervention, which is more s#ialithan an ideal distribution
estimated, e.g., as discussed in Eberhardt ed]afof each intervention.

In the experiments, when one variable is selectad ifitervention, the links
pointing to this variable will be removed from tgeph and this variable will be set
to a fixed value. The values of other variables sampled based on the Bayesian
network structure and the original conditional fabitities. In addition, one variable
can be selected for more than one round of intéivein the active learning process,
since the probabilities of the variables from finitata are not ideal.

We used the original conditional probabilities fre tBayesian networks first. To
test whether the specific values of the conditiopabbabilities in the original

1 http://www.mathworks.com/products/matlab/



Bayesian networks will affect the conclusions, v&aconducted experiments with
the same Bayesian network structures but randonm@eeditional probabilities. The
conclusions from the experiments with the randorhizenditional probabilities are
similar to the results with the original conditibngrobabilities. The following
sections will discuss the experimental results thage the Cancer network. The
results are consistent over all the benchmark Bagewetworks tested.

History of
smoking

Chronic e Lung
bronchitis cancer

Mass seen
on X-ray

Fig. 1. Cancer Bayesian network

3.1 Number of interventionsvs. structure entropy

In the first experiment, we tested the relationdigpveen the number of interventions
and the entropy of the learned structures. Thectibgeis to show how the entropy of
the learned structures varies with the differentlenselection methods, when the
number of the interventions is the same. The maimumber of interventions is set
to 6, because the structure entropy of the leaBagesian networks with more than 6
interventions are observed to be very low. The g ran 8 hours and finished 608
repeated experimerit®n the Cancer network (about 48 seconds for operarent).
The results are shown in Figure 2.

In Figure 2, the lines represent the change ohtleage structure entropy with the
number of interventions. Figure 2 shows that, \lith same number of interventions,
node selection with non-symmetrical entropy carivdea Bayesian network with the
lowest entropy ( also with the smallest variance awerage), which means the
structure of the learned Bayesian network is maggam. The highest structure
entropy is derived from observational data whendhme number of data items is
collected as that of the interventional data ahemtive learning step.

The entropy of Bayesian network structure learndd the random node selection
and node selection with the symmetrical entropy letween those of the node
selection with non-symmetrical entropy and the olzéonal data. This is consistent
with our expectation, since the intervention is 1symmetrical in nature and the
interventional data can provide more causal infdiona about the probabilities
between the manipulated variable and other vasalfléhere is a real edge from the
manipulated variable to one other variable, thebabdity of this edge should

2 We distinguish between the terms ‘“intervention” deelperiment” here. “Intervention” means to
manipulate the variables and observe other vasabi&xperiment” means to run the method for testing
Figure 2 and similarly for other figures, “6” issttlmaximum number of interventions.



increase with the interventional data, and the symmetrical entropy will decrease.
However, the symmetrical entropy may not decreasmsve do not have idea about
the probability change in other two conditions besw these two variables.

The significance of the entropy differences frorfiedent node selection measures
was evaluated by t-test. The p-values between thieoy of the final learned
Bayesian network structure from non-symmetricat@nt and other methods are all
smaller than 18°. This means that the entropy from non-symmetriatropy is

significantly smaller than others.
# of interventions vs. struct Entropy

5 ‘ .
—B&—non-sym entropy
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Fig. 2. Relationship between the number of interventions ted structure entropy of the
learned Bayesian network from Cancer network. The-gyom entropy and the sym entropy
refer to the node uncertainty measures with nonasgtrical entropy and symmetrical entropy
defined in formulas (1) and (2), which are the séonether figures.

From Figure 2, we have a surprising observation.elVihe number of
interventions is smaller than 6 in the Cancer nétwthe entropy of the learned
structure with nodes selected from the symmetgcdiopy is lower than that from
random node selection. When the number of intefoestis greater than or equal to
6, the entropy of the learned structure by nodecsiein with symmetrical entropy is
higher than that from random node selection. It msethat, in the first several
interventions, symmetrical entropy selects the Bode reduce the structure
uncertainty significantly when compared with randoode selection. However, when
the number of interventions is greater than 6, lda# nodes (nodeX, and Xs in
Figure 1) are always selected by symmetrical egtrdfhe data with leaf nodes as
interventional nodes can reduce the estimated pilithes of the edges from the
nodes (as leaf nodes in the ground truth Bayesédwarks) to other nodes. But, the
data cannot provide information about the influeraationships from other nodes to
the leaf nodes. The uncertainty of the leaf noddésutated from symmetrical entropy
can still be quite large. However, the random methtay select other nodes for
intervention, which could generate subsequent\etgional data with more causal
information about the edges from other nodes tb nedes and leaf nodes to other
nodes. Such information will reduce the total sinoe entropy.

Figure 2 also shows that, with more interventionki¢h means more data), the
entropy of the learned structure decreases withhallnode selection criteria. The



entropy of the learned Bayesian network structueeegally decreases more in the
first few interventions. In the later stages, the@py of the learned structure seems to
converge to certain values. These results are aindtross all the benchmark

Bayesian networks tested.

# of interventions vs. distances to the ground truth
1 . .

* —B—NoNn-sym entropy
0sl =%=-3ym entropy
random
- gbservational

average distances to the ground truth

# of interventions

Fig. 3.Relationship between the number of interventionsthadaverage hamming distance
from the learned Bayesian network structure to tieemd truth from Cancer network.

3.2 Number of interventions vs. Distance of the learned structure to the
ground truth

In this experiment, we compared the learned stracmith the ground truth Bayesian
networks. The difference between the learned sirecand the ground truth is
measured with hamming distance. Figure 3 shows iode selection with non-
symmetrical entropy leads to the smallest averaganhing distance to the ground
truth, as compared with other methods for nodectiel® symmetrical entropy,
random node selection or observational data onlgh &/ or more interventions with
nodes selected by non-symmetrical entropy, theageedistance is 0 and the variance
is 0 with the Cancer network. The variances of ltaenming distance from non-
symmetrical entropy is the lowest, while the vaties of the hamming distances from
the symmetrical entropy and observational datagaite high (about 0.55 and 0.33
respectively). In addition, Figure 3 shows the d®mn of the average hamming
distance with the number of interventions. With enorterventional data, the average
distance from the learned structure to the grouutth will be smaller.

From Figures 2 and 3, we can observe that, whemuihgber of the interventions
increases, the structure entropy converges to tigdow value with either node
selection with non-symmetrical entropy or randondengelection. The reason is that,
when there are sufficient interventional data, eitmethod can identify the true
causal Bayesian network structure. We note thatyeler, when the number of
interventions is small, non-symmetrical entropy ldooutperform all other methods
for node selection in active learning. The differenin performance could be



significant in applications where data are scarceonly a small number of
interventions are feasible.
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Fig. 4. Relationship between structure entropy of the lehfBayesian network and the

hamming distance to the ground truth

3.3 Structureentropy vs. distance of the learned structureto the ground truth

In practice, we do not know the ground truth stutet and cannot use the hamming
distance from the learned structure to the grouuith tstructure as the stop criteria to
learn causal Bayesian networks. This experiment wxlamine the relationship
between the structure entropy and the hammingrdist&rom the learned structure to
the ground truth Bayesian network structure. Figughows how the entropy of the
learned structure approximates the average hammisijince from the learned
structure to the ground truth. The relationshipweein the average entropy of the
learned structure and the average distance fromet@ed structure to the ground
truth is approximately linear, which means that ¢néropy of the learned structure is
a good approximation of the distance of the learsidcture to the ground truth
Bayesian network and can be used as a stop critimidhe structure learning.

3.4 Structureentropy asstop criterion

In the next experiment, we tested the effect of streicture entropy as the stop
criterion. Figure 5 shows that, with non-symmefrieatropy as the node selection
criterion, the program can reach the required sirecentropy with a smaller number
of interventions. When the interventional nodedkested with symmetrical entropy, a
large number of interventions are needed. The testth observational data only do
not show in Figure 5, as the program cannot rehehréquired structure entropy in
the maximum steps allowed (50 steps) in that sekpériments.

A similar surprising observation appears in Figiraandom node selection can
reach the required structure entropy with smallember of interventions than using
symmetrical entropy for node selection. After inigeting the intervention process

10



for node selection, we found that symmetrical gmtravould select leaf nodes as the
interventional node in many cases. Since the ipt@gional data with the leaf nodes in
the ground-truth Bayesian network intervened do pobvide enough causal
information to reduce the total structure entrofyttee learned Bayesian network,
some edge probabilities between the leaf node #ret aodes may not converge to 0
or 1 with more data. In this situation, the leafles can be selected for intervention
again in node selection with symmetrical entropyd @he structure entropy of the
learned structure cannot be reduced with more datthe random node selection,
variables other than the leaf nodes can be seldoteimtervention, which generate
data with more causal information and can achibeel¢arned structure with smaller
entropy. And with the non-symmetrical entropy, leatdles are only selected as the
interventional nodes in a few rounds, because thkgbilities from the leaf nodes to
other nodes quickly converge to 0, and the non-sgirical entropy will be near 0.
This can explain why the non-symmetrical entropybédter than others for node
selection in active learning.

structural entropy vs. # of interventions
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Fig. 5. Relationship of structure entropy and the numbeintgrventions required from
Cancer network.

3.5 Postivefindingsin subsequent interventions

In the final experiment, we considered the situatigth resource constraints. In the
previous experiments, the objective is to identifig whole causal structure with
multiple interventions and we have examined diffélissues to reach this objective.
In practice, there are usually resource constréamtmterventions, and sometimes we
can conduct only one interventional experimenthia case, we hope to get a positive
finding in this single interventional experimentian will show that there is really a
causal relationship between the manipulated variabtl one of the other variables.
The problem in this experiment is defined as foowiven the available data,
domain knowledge and resource constraints, whtiedikelihood to get a positive
finding in a single interventional experiment? Tdéy no guarantee to have a positive
finding in a single experiment, but some strategiesavailable to increase the chance
for a positive finding. In the experiment, we geated the observational data and

11



interventional data randomly first. Then we samptbé possible edges in the
Bayesian network with probabilities 0.1, 0.2, Orgl @.4 respectively as known edges
(or domain knowledge). In this case, we assume are anly conduct one more
interventional experiment. We estimated the edgsbailities with the available
data, and chose as the interventional node thexpaoele of the edge with the highest
probability. We repeated the experiments 1000 timéke different scenarios.

The results show that in above 98.5% cases, thesediih the highest probability
from the available data and the known edges (asadohknowledge) are the true
edges. It empirically shows that the edges with lilghest probability are the best
choice for a positive finding if we have resouroastraints and only can conduct one
more interventional experiment.

4  Discussion and Conclusion

In this work, we investigate active learning of Bain network structure when the
interventional data is a data set at each actiamieg step, and propose using non-
symmetrical information entropy to select nodesifdervention. Experiments show
that non-symmetrical entropy can reach the requitedcture entropy with smaller
number of interventions than symmetrical entropgd aandom node selection for
intervention, and much better than merely estingative structure with observational
data in all three benchmark Bayesian networks degtgossible reason for the better
performance of the non-symmetrical entropy is thirventions are non-symmetrical
in nature.

Experimental results also show that the learnedictire entropy has an
approximately linear relationship with the aver&agenming distance from the learned
structure to the ground truth Bayesian networksTimplies that the structure entropy
is an effective measure for the goodness of thendgh causal Bayesian network
structure, and can be used as an effective sttgyion.

We have tested significance of the difference efldarned structure entropy from
node selection based on the non-symmetrical entapy other methods. The
statistical test shows that the structure entrapynfnode selection with the non-
symmetrical entropy is significantly smaller th&at from other methods.

We have tested the possibility to have a positivelifig when only a single
intervention is possible due to resource consgailmt this case, experiment results
show that the edges with the highest probabildgiesusually the true edges given the
available data and domain knowledge. It meansiti&amore likely to have a positive
finding in next intervention by selecting the parerf the edge with the highest
probability as the interventional node. In practitewe can conduct one more
intervention, our best choice is to choose the miamede of the edge with the high
probability from the available data and domain ktezlge. This will give us the best
chance to have a real causal relationship discoekthie manipulated variable with
one intervention.

A surprising observation in the experiments is tihat random node selection for
intervention can outperform the node selection wgymmetrical entropy when the
number of interventions is large. When the numbleinterventions is small, the

12



entropy of the learned Bayesian network structuith eymmetrical entropy will be
smaller than that from random node selection orramee When the number of
interventions is large, the symmetrical entropylwaften select leaf nodes for
intervention, which cannot provide sufficient inficaition to reduce the uncertainty of
the edge probabilities. However, random node seleatan select nodes other than
leaf nodes for intervention, which can lead to dherall reduction in the uncertainty
of the edge probabilities.

The closest related efforts to our work are thdseamg and Koller [14] and Eaton
and Murphy [4]. Eaton and Murphy introduced undertatervention, but did not
discuss active learning, even though they useda s with both observational and
interventional data. There are three main diffeesnbetween our work and that of
Tong and Koller [14]: 1) The interventional datdlected at each active learning step
is a data set, rather than a single instance; 2h &&aton and Murphy’s work [4], we
use the same exact method proposed by Koivisto tf7]estimate the edge
probabilities, rather than MCMC, which can lead better structure entropy
estimation and node selection. The current exathadefor edge probabilities can
only be applied to cases with around 25 variabMsle the MCMC method can be
applied to cases with more variables. In our methbd edge probabilities can be
estimated with MCMC method when the number of \desa is large; and 3) We
select the nodes for intervention based on the syommetrical entropy, not the
expected posterior loss. We note that when theviatgional data is a data set in each
active learning step, it is not feasible to estarthie expected posterior loss due to the
combinatorial problem of the possible data.

Our method is not designed to replace other relateitk, and does not apply to
domains where repeated interventions are not gessbch as economics or social
science. We have based our investigations on afsdifferent, complementary, or
integrated situations with respect to the previetierts [2, 4, 7, 14]: these efforts
have also inspired some technical and presentatéas reported in this paper. There
are some general directions to extend our worky siscconsidering missing values or
hidden variables in the causal Bayesian network$uture, we will try to extend our
results to more situations and apply the methoddme real-life applications in
different domains.
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