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Abstract. Causal knowledge is crucial for facilitating comprehension, 
diagnosis, prediction, and control in automated reasoning. Active learning in 
Bayesian networks involves interventions by manipulating specific variables or 
their interactions, and observing the patterns of change over the other variables 
to derive causal relationships for knowledge discovery. In this paper, we 
propose a new active learning approach that supports interventions with node 
selection. Our method admits a node selection criterion based on non-
symmetrical information entropy and a stop criterion based on minimizing 
structure entropy of the resulting networks. We examine the technical 
challenges and practical issues in developing effective node selection and 
stopping criteria in our method. Experimental results on a set of benchmark 
Bayesian networks are promising. The proposed method is applicable in many 
real-life applications where multiple instances are simultaneously sampled as a 
data set in each active learning step. 

Keywords: Bayesian networks, active learning, intervention, non-symmetrical 
entropy, node selection, stop criterion 

1   Introduction 

Causal knowledge is important for comprehension, diagnosis, prediction and control 
in automated reasoning. Causal Bayesian networks are extensions to Bayesian 
networks that explicitly and concisely represent causal knowledge as variables and 
their directed graphical relationships in uncertain domains [11]. This research focuses 
on learning causal knowledge from data that corresponds to learning the structure of 
causal Bayesian networks for knowledge discovery. A major research challenge is to 
learn causal knowledge from both observational and interventional data. 
Observational data are derived from passive observations when the underlying system 
evolves autonomously. Interventional data are observed when some variables are 
actively manipulated to fixed values, while other variables evolve autonomously 
according to the underlying system mechanisms; such data directly reflect the effects 
of the active manipulation of certain variables on the rest of the system.  
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Most of the existing Bayesian network structure learning methods deal with 
observational data [1, 6]. Recently, some new learning methods have been proposed 
to combine observational data with interventional data [2, 10, 14]. Cooper and Yoo 
[2] identified the possible assumptions for probability updates with both observational 
and interventional data and proposed a method to update the probabilities with the 
combined data. Tong and Koller [14] developed an active learning method to guide 
the interventions to collect new interventional data for further structure probability 
updates. Eberhardt et al. [5] proved that, under ideal conditions with causal Markov 
assumption and faithfulness assumption (and ideal distributions), the number of 
interventions required to identify the causal relationships among N  variables is 

1−N  when only one variable can be manipulated each time, and the number of 
interventions is N2log  when multiple variables can be manipulated simultaneously. 

Meganck et al. [9] assumed that the correct complete partial directed acyclic graphs 
(CPDAGs) can be learned from the observational data and the directions of the un-
directed edges in the CPDAGs can be determined with interventional data.  

Active learning in Bayesian networks involves interventions by manipulating 
specific variables or their interactions, and observing the patterns of change over the 
other variables to derive causal relationships for knowledge discovery. In previous 
active learning work [10, 14], the interventional data are assumed to include one 
instance at each active learning step. In this work, we consider a new scenario: a data 
set of multiple instances is collected when one variable is manipulated at each active 
learning step. Such experiments arise in many real-life applications. For instance, in 
measuring protein expression levels with flow cytometry in biology, the expression 
levels of some proteins (as variables) can be intervened and their effects on the 
expression levels of other proteins are observed from many cells at a time, and the 
observations of protein expression levels from one cell are the values in one instance 
[4, 12]. 

With an interventional data set, we can determine the causal influences of the 
manipulated variables on other variables based on the theory of causality with agency: 
manipulating causes can change the effects but not vice versa [15]. In practice, 
marginal distributions of the variables are used to detect causal influence. If the 
marginal distribution of variable B  changes when variable A  is manipulated to 
different values, we say that variable A  precedes variable B  in causal ordering, 
variable A  is a cause of variable B , and variable B  is an effect of variable A .  

There are different definitions of intervention: perfect intervention, imperfect 
intervention [8, 13], and uncertain intervention [4]. Different types of intervention 
have different effects on the Bayesian network structure learned from data. We will 
focus on perfect intervention in this work. When we manipulate a variable under 
perfect intervention, the manipulated variable takes the value we specify in the 
intervention. This is what we mean by manipulation in the general sense. 

Our objective is to learn the causal Bayesian network structure that achieves the 
specified structure accuracy with a minimal number of interventions, when the 
interventional data comprise of a data set at each active learning step. Specifically, we 
address the following questions in the active learning for causal Bayesian network 
structure: 1) What is a good criterion for selecting the nodes for new interventions, 
with respect to “correctness” in terms of entropy of the learned structure? 2) What is 
the effect of the stop criterion on the learned structure in the learning process? and 3) 
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What is the probability of a positive finding in the next immediate intervention, given 
the constraint that only one more intervention can be performed? 

We introduce a new active learning algorithm for causal Bayesian networks with a 
node selection criterion based on a measure of non-symmetrical entropy and a 
learning stop criterion based on the structure entropy of the resulting Bayesian 
networks. The definition of the non-symmetrical entropy is motivated by the non-
symmetrical nature of the interventions. We examine the effectiveness and efficiency 
of the proposed method on identifying causal relationships based on a set of 
benchmark Bayesian networks; we also compare the results with some other major 
methods involving node selection with symmetrical entropy, random node selection, 
and observational data only.  

2   Method 

2.1 Causal Bayesian networks 

A causal Bayesian network [11] is a directed acyclic graph (DAG), in which each 
node corresponds to a distinct variable 

iX  in the domain, and each edge corresponds 

to a causal influence from the parent variable to the child variable. The parent variable 
of an edge is the variable at the tail of the edge, and the child variable is the variable 
at the head of the edge. The meaning of “causal” in causal Bayesian networks is from 
the interpretation of the edges in the model: The causal influence from the parent 
variable to the child variable means that, when we manipulate the parent variable by 
fixing its state to a specific value, we can observe the change in the probability 
distribution of the child variable. If there is no causal influence from one variable A to 
another variable B, there will be no edge from variable A to variable B.  Moreover, 
when one variable is manipulated, the causal influence relationship between other 
variables will not change, and the conditional probability of the child variable given 
its parents will be the same. Under the causal Markov assumption, each variable is 
independent of its ancestors given the values of its parents. The joint probabilities in 
the domain can be represented as  

∏=
i iin XPaXpXXp ))(|(),...,( 1  

where )( iXPa  denotes the parents of 
iX  in the causal Bayesian network. In this 

paper, we will use “node” and “variable” interchangeably. A good definition of causal 
Bayesian network and its properties can be found in Pearl’s book [11]. 

2.2 Active learning 

Active learning is different from the ordinary passive learning. Passive learning works 
with a set of readily available data; the data set does not change in the learning 
process. In active learning, we can sample new data in the learning process. In the 
active learning of causal Bayesian networks [10, 14], the process starts with an 
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available data set, and the probabilities of the edges are estimated from the available 
data (all observational and interventional data). With the edge probabilities, a node is 
selected with a certain criterion for intervention, and a new instance is collected in 
order to maximally reduce the expected structure entropy. The process can be 
repeated until the goal is reached. 

Estimating the edge probabilities is an important part of the active learning process. 
For every pair of variables, three possible situations between them are usually 
considered: an edge from A  to B  ( BA → ), an edge from B  to A  ( BA ← ), or 
no edge between A  and B  ( BA ⊥ ). The probabilities of the edges given the 
available data D and domain knowledge K are defined as 

∑
∈→

=→
)(

),|Pr(),|Pr(
GEBA

KDGKDBA  

where ),|Pr( KDG  is the probability of the Bayesian network G given the data D 

and domain knowledge K, and E(G) is the set of edges in Bayesian network G. In the 
following discussions, D and K will be omitted for brevity. The probabilities of 

BA ←  and BA ⊥  are similarly defined as the probability of BA → .  The edge 
entropy is defined as in [14]: 

)(log))(                   

)(log)(                   

)(log)(),(
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The structure entropy of Bayesian network G is defined as 

∑=
BA

SS BAHGH
,

),()(  

In the previous work [14], the edge probabilities are estimated approximately with 
Markov Chain Monte Carlo (MCMC). In contrast, we estimate the edge probabilities 
with an exact method proposed by Koivisto [7], since the exact edge probabilities can 
provide more information for node selection. Koivisto utilized the intuition that the 
order of the parents of a variable is irrelevant to the variable’s probability estimation, 
and applied forward and backward dynamic programming and fast truncated Mobius 
transform to estimate all the edge probabilities in )2( nnO  time, where n  is the 

number of variables in the domain. When the interventional data is combined with 
observational data, the instances with the variable intervened will not be used in 
calculating the probability of the family with the intervened variable as the child (the 
assumptions and the method can be referred to Cooper and Yoo’s work [2]). 
Koivisto’s exact method can be applied to domains with a moderate number of 
variables (around 25). Our intention here is to closely examine the performance of an 
exact estimation method for the proposed node selection criterion.  

2.3 Selecting nodes for new interventions 

In the previous work [14], node selection for intervention is based on the expected 
posterior loss of the structure entropy. The expected posterior loss for all the possible 
node selection needs to be estimated, and subsequently one node is selected for 
intervention to collect a new interventional instance. 
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We consider the situation where a data set will be collected when one variable is 
under one intervention. The interventional data set will show whether the changed 
value of the manipulated variable will affect the probability distributions of the other 
variables. The change from the probability distributions of the other variables can 
provide causal information between the interventional variable and all the other 
variables, and can help reduce the uncertainty of the causal relationships between the 
interventional variable and all the other variables. 

We choose the node with maximum node uncertainty for intervention because it is 
computationally not feasible to calculate the expected posterior loss of the multiple 
instances in the entire data set at each step. The node uncertainty between a variable 
and all the other variables can be estimated under two different conditions:  

( )∑ →−→−−→→−=
B

NS BABABABAAU ))Pr(1log(*))Pr(1()log(Pr(*)Pr()(
(1) 

∑=
B

SS BAHAU ),()(                                             (2) 

The first case 
NSU  considers two conditions between variable A  and the other 

variables: the probabilities whether there is an edge from A  to other variables or not. 
The second case 

SU  considers the three possible conditions between variable A  

and the other variables: BA → , BA ← , and BA ⊥ . The second case is generally 
used in Bayesian network structure leaning. 

We refer to 
NSU  as non-symmetrical entropy and 

SU  as symmetrical entropy. 

The definition of the non-symmetrical entropy is motivated by the non-symmetrical 
nature of the intervention. In an intervention, we can manipulate only one variable in 
a pair of variables to derive the causal information between the pair: whether or not 
the manipulated variable affects the non-manipulated variable. We cannot derive 
causal information from the non-manipulated variable to the manipulated variable. If 
both variables are manipulated, we cannot derive useful causal information between 
this pair of variables from the interventional data.  

Besides examining the effects on node selection with these two measures, we also 
consider random node selection for intervention and selection using observational 
data only (i.e., there is no interventional variable in new data collection at each step of 
the active learning process). 

2.4   Stop criteria for causal structure learning 

Another main problem in applying Bayesian network learning for causal knowledge 
discovery in practice is to decide when to stop the learning process– when do we 
think that the learned causal Bayesian network is good enough? The intuitive way is 
to choose a fixed number of interventions as the stop criterion. The disadvantage of 
this approach is that there is no guarantee on the quality of the learned Bayesian 
network structure. We propose to use certain “acceptable” entropy of the learned 
structure as the stop criterion. The ideal entropy of the learned structure is 0; however, 
it is difficult in practice to reach the ideal condition. We consider the effects of the 
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different values of entropy of the learned structure as the stop criteria on the accuracy 
of the learned structures. 

3   Experiments 

The proposed method has been tested in experiments with the same benchmark 
Bayesian networks as those reported in Tong and Koller’s work [14]: Cancer network 
(as shown in Figure 1), Asia network, and Car network. There are 5 variables in 
Cancer network, 8 variables in Asia network and 12 variables in Car network 
respectively. We conducted the simulations under MATLAB 1 (version 7) with the 
support of the BDAGL package [3]. The machine used is a Dell OptiPlex GX280 
desktop with 1 Gigabyte memory and 3GigaHz Intel processor. 

The experiment setup is as follows:  
1. Choose a Bayesian network from Cancer network, Asia network, or Car 

network as the ground truth Bayesian network; 
2. Sample an observational data set with 200 instances from the ground truth 

Bayesian network; 
3. Estimate the edge probabilities and structure entropy with the available data 

(and domain knowledge, if any); 
4. Check the stop criterion. If the stop criterion is satisfied, stop the learning 

process; otherwise, continue; 
5. Select one node for intervention based on the node uncertainty measures from 

non-symmetrical entropy, symmetrical entropy, random node selection for 
intervention, or without interventional node; 

6. Generate a new interventional data with 200 instances from the ground truth 
Bayesian network with the selected interventional variables; return to step 3). 

In the experiments, the edge probabilities are estimated with the exact method from 
Koivisto [7]. The uniform prior of Bayesian network structures is used. We tested two 
stop criteria in our experiments - the number of interventions or the structure entropy 
of the learned Bayesian networks. In the latter, the maximum number of interventions 
is set to 50. This is because we had observed that the structure entropy of the learned 
Bayesian network would not reach certain small values with symmetrical entropy, 
even if a very large data set is sampled. The size of the interventional data is 200 
instances in each intervention, which is more realistic than an ideal distribution 
estimated, e.g., as discussed in Eberhardt et al. [5], for each intervention. 

In the experiments, when one variable is selected for intervention, the links 
pointing to this variable will be removed from the graph and this variable will be set 
to a fixed value. The values of other variables are sampled based on the Bayesian 
network structure and the original conditional probabilities. In addition, one variable 
can be selected for more than one round of intervention in the active learning process, 
since the probabilities of the variables from finite data are not ideal. 

We used the original conditional probabilities in the Bayesian networks first. To 
test whether the specific values of the conditional probabilities in the original 

                                                           
1 http://www.mathworks.com/products/matlab/ 
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Bayesian networks will affect the conclusions, we also conducted experiments with 
the same Bayesian network structures but randomized conditional probabilities. The 
conclusions from the experiments with the randomized conditional probabilities are 
similar to the results with the original conditional probabilities. The following 
sections will discuss the experimental results based on the Cancer network. The 
results are consistent over all the benchmark Bayesian networks tested. 

 

3.1 Number of interventions vs. structure entropy 

In the first experiment, we tested the relationship between the number of interventions 
and the entropy of the learned structures. The objective is to show how the entropy of 
the learned structures varies with the different node selection methods, when the 
number of the interventions is the same. The maximum number of interventions is set 
to 6, because the structure entropy of the learned Bayesian networks with more than 6 
interventions are observed to be very low. The programs ran 8 hours and finished 608 
repeated experiments2 on the Cancer network (about 48 seconds for one experiment). 
The results are shown in Figure 2. 

In Figure 2, the lines represent the change of the average structure entropy with the 
number of interventions. Figure 2 shows that, with the same number of interventions, 
node selection with non-symmetrical entropy can derive a Bayesian network with the 
lowest entropy ( also with the smallest variance on average), which means the 
structure of the learned Bayesian network is more certain. The highest structure 
entropy is derived from observational data when the same number of data items is 
collected as that of the interventional data at each active learning step. 

The entropy of Bayesian network structure learned with the random node selection 
and node selection with the symmetrical entropy fall between those of the node 
selection with non-symmetrical entropy and the observational data. This is consistent 
with our expectation, since the intervention is non-symmetrical in nature and the 
interventional data can provide more causal information about the probabilities 
between the manipulated variable and other variables. If there is a real edge from the 
manipulated variable to one other variable, the probability of this edge should 

                                                           
2 We distinguish between the terms “intervention” and “experiment” here. “Intervention” means to 

manipulate the variables and observe other variables. “Experiment” means to run the method for testing. In 
Figure 2 and similarly for other figures, “6” is the maximum number of interventions. 
 

X1 

X2 X3 

X4 X5 

Chronic 
bronchitis 

History of 
smoking 

Lung 
cancer 

Fatigue  
Mass seen 
on X-ray 

Fig. 1.  Cancer Bayesian network 
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increase with the interventional data, and the non-symmetrical entropy will decrease. 
However, the symmetrical entropy may not decrease since we do not have idea about 
the probability change in other two conditions between these two variables.  

The significance of the entropy differences from different node selection measures 
was evaluated by t-test. The p-values between the entropy of the final learned 
Bayesian network structure from non-symmetrical entropy and other methods are all 
smaller than 10-10. This means that the entropy from non-symmetrical entropy is 
significantly smaller than others. 

 
 

Fig. 2. Relationship between the number of interventions and the structure entropy of the 
learned Bayesian network from Cancer network. The non-sym entropy and the sym entropy 
refer to the node uncertainty measures with non-symmetrical entropy and symmetrical entropy 
defined in formulas (1) and (2), which are the same for other figures. 
 

From Figure 2, we have a surprising observation. When the number of 
interventions is smaller than 6 in the Cancer network, the entropy of the learned 
structure with nodes selected from the symmetrical entropy is lower than that from 
random node selection. When the number of interventions is greater than or equal to 
6, the entropy of the learned structure by node selection with symmetrical entropy is 
higher than that from random node selection. It means that, in the first several 
interventions, symmetrical entropy selects the nodes to reduce the structure 
uncertainty significantly when compared with random node selection. However, when 
the number of interventions is greater than 6, the leaf nodes (nodes X4 and X5 in 
Figure 1) are always selected by symmetrical entropy. The data with leaf nodes as 
interventional nodes can reduce the estimated probabilities of the edges from the 
nodes (as leaf nodes in the ground truth Bayesian networks) to other nodes. But, the 
data cannot provide information about the influence relationships from other nodes to 
the leaf nodes. The uncertainty of the leaf nodes calculated from symmetrical entropy 
can still be quite large. However, the random method may select other nodes for 
intervention, which could generate subsequent interventional data with more causal 
information about the edges from other nodes to leaf nodes and leaf nodes to other 
nodes. Such information will reduce the total structure entropy. 

Figure 2 also shows that, with more interventions (which means more data), the 
entropy of the learned structure decreases with all the node selection criteria. The 
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entropy of the learned Bayesian network structure generally decreases more in the 
first few interventions. In the later stages, the entropy of the learned structure seems to 
converge to certain values. These results are similar across all the benchmark 
Bayesian networks tested. 
 

 
 

Fig. 3. Relationship between the number of interventions and the average hamming distance 
from the learned Bayesian network structure to the ground truth from Cancer network. 

3.2 Number of interventions vs. Distance of the learned structure to the 
ground truth 

In this experiment, we compared the learned structure with the ground truth Bayesian 
networks. The difference between the learned structure and the ground truth is 
measured with hamming distance. Figure 3 shows that node selection with non-
symmetrical entropy leads to the smallest average hamming distance to the ground 
truth, as compared with other methods for node selection: symmetrical entropy, 
random node selection or observational data only. With 6 or more interventions with 
nodes selected by non-symmetrical entropy, the average distance is 0 and the variance 
is 0 with the Cancer network. The variances of the hamming distance from non-
symmetrical entropy is the lowest, while the variances of the hamming distances from 
the symmetrical entropy and observational data are quite high (about 0.55 and 0.33 
respectively). In addition, Figure 3 shows the changes of the average hamming 
distance with the number of interventions. With more interventional data, the average 
distance from the learned structure to the ground truth will be smaller. 

From Figures 2 and 3, we can observe that, when the number of the interventions 
increases, the structure entropy converges to a certain low value with either node 
selection with non-symmetrical entropy or random node selection. The reason is that, 
when there are sufficient interventional data, either method can identify the true 
causal Bayesian network structure. We note that, however, when the number of 
interventions is small, non-symmetrical entropy could outperform all other methods 
for node selection in active learning. The difference in performance could be 
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significant in applications where data are scarce or only a small number of 
interventions are feasible. 

 

 
Fig. 4.  Relationship between structure entropy of the learned Bayesian network and the 

hamming distance to the ground truth 

3.3 Structure entropy vs. distance of the learned structure to the ground truth 

In practice, we do not know the ground truth structure, and cannot use the hamming 
distance from the learned structure to the ground truth structure as the stop criteria to 
learn causal Bayesian networks. This experiment will examine the relationship 
between the structure entropy and the hamming distance from the learned structure to 
the ground truth Bayesian network structure. Figure 4 shows how the entropy of the 
learned structure approximates the average hamming distance from the learned 
structure to the ground truth. The relationship between the average entropy of the 
learned structure and the average distance from the learned structure to the ground 
truth is approximately linear, which means that the entropy of the learned structure is 
a good approximation of the distance of the learned structure to the ground truth 
Bayesian network and can be used as a stop criterion for the structure learning. 

3.4 Structure entropy as stop criterion 

In the next experiment, we tested the effect of the structure entropy as the stop 
criterion. Figure 5 shows that, with non-symmetrical entropy as the node selection 
criterion, the program can reach the required structure entropy with a smaller number 
of interventions. When the interventional node is selected with symmetrical entropy, a 
large number of interventions are needed. The results with observational data only do 
not show in Figure 5, as the program cannot reach the required structure entropy in 
the maximum steps allowed (50 steps) in that set of experiments. 

A similar surprising observation appears in Figure 5: random node selection can 
reach the required structure entropy with smaller number of interventions than using 
symmetrical entropy for node selection. After investigating the intervention process 
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for node selection, we found that symmetrical entropy would select leaf nodes as the 
interventional node in many cases. Since the interventional data with the leaf nodes in 
the ground-truth Bayesian network intervened do not provide enough causal 
information to reduce the total structure entropy of the learned Bayesian network, 
some edge probabilities between the leaf node and other nodes may not converge to 0 
or 1 with more data. In this situation, the leaf nodes can be selected for intervention 
again in node selection with symmetrical entropy, and the structure entropy of the 
learned structure cannot be reduced with more data. In the random node selection, 
variables other than the leaf nodes can be selected for intervention, which generate 
data with more causal information and can achieve the learned structure with smaller 
entropy. And with the non-symmetrical entropy, leaf nodes are only selected as the 
interventional nodes in a few rounds, because the probabilities from the leaf nodes to 
other nodes quickly converge to 0, and the non-symmetrical entropy will be near 0. 
This can explain why the non-symmetrical entropy is better than others for node 
selection in active learning. 

 

 
Fig. 5.  Relationship of structure entropy and the number of interventions required from 

Cancer network. 

3.5 Positive findings in subsequent interventions 

In the final experiment, we considered the situation with resource constraints. In the 
previous experiments, the objective is to identify the whole causal structure with 
multiple interventions and we have examined different issues to reach this objective. 
In practice, there are usually resource constraints for interventions, and sometimes we 
can conduct only one interventional experiment. In this case, we hope to get a positive 
finding in this single interventional experiment which will show that there is really a 
causal relationship between the manipulated variable and one of the other variables.   

The problem in this experiment is defined as follows: given the available data, 
domain knowledge and resource constraints, what is the likelihood to get a positive 
finding in a single interventional experiment? There is no guarantee to have a positive 
finding in a single experiment, but some strategies are available to increase the chance 
for a positive finding. In the experiment, we generated the observational data and 
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interventional data randomly first. Then we sampled the possible edges in the 
Bayesian network with probabilities 0.1, 0.2, 0.3 and 0.4 respectively as known edges 
(or domain knowledge). In this case, we assume we can only conduct one more 
interventional experiment. We estimated the edge probabilities with the available 
data, and chose as the interventional node the parent node of the edge with the highest 
probability. We repeated the experiments 1000 times in the different scenarios. 

The results show that in above 98.5% cases, the edges with the highest probability 
from the available data and the known edges (as domain knowledge) are the true 
edges. It empirically shows that the edges with the highest probability are the best 
choice for a positive finding if we have resource constraints and only can conduct one 
more interventional experiment.  

4 Discussion and Conclusion 

In this work, we investigate active learning of Bayesian network structure when the 
interventional data is a data set at each active learning step, and propose using non-
symmetrical information entropy to select nodes for intervention. Experiments show 
that non-symmetrical entropy can reach the required structure entropy with smaller 
number of interventions than symmetrical entropy and random node selection for 
intervention, and much better than merely estimating the structure with observational 
data in all three benchmark Bayesian networks tested. A possible reason for the better 
performance of the non-symmetrical entropy is that interventions are non-symmetrical 
in nature. 

Experimental results also show that the learned structure entropy has an 
approximately linear relationship with the average hamming distance from the learned 
structure to the ground truth Bayesian network. This implies that the structure entropy 
is an effective measure for the goodness of the learned causal Bayesian network 
structure, and can be used as an effective stop criterion. 

We have tested significance of the difference of the learned structure entropy from 
node selection based on the non-symmetrical entropy and other methods. The 
statistical test shows that the structure entropy from node selection with the non-
symmetrical entropy is significantly smaller than that from other methods. 

We have tested the possibility to have a positive finding when only a single 
intervention is possible due to resource constraints. In this case, experiment results 
show that the edges with the highest probabilities are usually the true edges given the 
available data and domain knowledge. It means that it is more likely to have a positive 
finding in next intervention by selecting the parent of the edge with the highest 
probability as the interventional node. In practice, if we can conduct one more 
intervention, our best choice is to choose the parent node of the edge with the high 
probability from the available data and domain knowledge. This will give us the best 
chance to have a real causal relationship discovery of the manipulated variable with 
one intervention. 

A surprising observation in the experiments is that the random node selection for 
intervention can outperform the node selection with symmetrical entropy when the 
number of interventions is large. When the number of interventions is small, the 
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entropy of the learned Bayesian network structure with symmetrical entropy will be 
smaller than that from random node selection on average. When the number of 
interventions is large, the symmetrical entropy will often select leaf nodes for 
intervention, which cannot provide sufficient information to reduce the uncertainty of 
the edge probabilities. However, random node selection can select nodes other than 
leaf nodes for intervention, which can lead to the overall reduction in the uncertainty 
of the edge probabilities. 

The closest related efforts to our work are those of Tong and Koller [14] and Eaton 
and Murphy [4]. Eaton and Murphy introduced uncertain intervention, but did not 
discuss active learning, even though they used a data set with both observational and 
interventional data. There are three main differences between our work and that of 
Tong and Koller [14]: 1) The interventional data collected at each active learning step 
is a data set, rather than a single instance; 2) As in Eaton and Murphy’s work [4], we 
use the same exact method proposed by Koivisto [7] to estimate the edge 
probabilities, rather than MCMC, which can lead to better structure entropy 
estimation and node selection. The current exact method for edge probabilities can 
only be applied to cases with around 25 variables, while the MCMC method can be 
applied to cases with more variables. In our method, the edge probabilities can be 
estimated with MCMC method when the number of variables is large; and 3) We 
select the nodes for intervention based on the non-symmetrical entropy, not the 
expected posterior loss. We note that when the interventional data is a data set in each 
active learning step, it is not feasible to estimate the expected posterior loss due to the 
combinatorial problem of the possible data.  

Our method is not designed to replace other related work, and does not apply to 
domains where repeated interventions are not possible, such as economics or social 
science. We have based our investigations on a set of different, complementary, or 
integrated situations with respect to the previous efforts [2, 4, 7, 14]: these efforts 
have also inspired some technical and presentation ideas reported in this paper. There 
are some general directions to extend our work, such as considering missing values or 
hidden variables in the causal Bayesian networks. In future, we will try to extend our 
results to more situations and apply the method to some real-life applications in 
different domains. 
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