

T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l o f C o m p u t i n g
Lower Kent Ridge Road, Singapore 119260

TRB7/06

PRIVE: Anonymous Location-Based Queries
 in Distributed Mobile Systems

Gabriel GHINITA, Panos KALNIS
 and Spiros SKIADOPOULUS

July 2006

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the
author, at the address shown on the cover.

JAFFAR, Joxan

Dean of School

PRIVÉ: Anonymous Location-Based Queries in Distributed Mobile Systems

Gabriel Ghinita1 Panos Kalnis1 Spiros Skiadopoulos2

1Dept. of Computer Science
National University of Singapore

{ghinitag,kalnis}@comp.nus.edu.sg

2Dept. of Computer Science & Technology
University of Peloponnese, Greece

spiros@uop.gr

Abstract

Nowadays, mobile users with positioning devices can
access Location Based Services (LBS) and query about
points of interest in their proximity. For such applica-
tions to succeed, privacy and confidentiality are essen-
tial. Encryption alone is not adequate; although it safe-
guards the system against eavesdroppers, the queries them-
selves may disclose the location and identity of the user.
Recently, there have been proposed centralized architec-
tures based on K-anonymity, which utilize an intermediate
anonymizer between the mobile users and the LBS. How-
ever, the anonymizer must be updated continuously with
the current locations of all users. Moreover, the complete
knowledge of the entire system poses a security threat if the
anonymizer is compromised.

In this paper we address two issues: (i) We show that
existing approaches may fail to provide spatial anonymity
for some distributions of user locations and describe a
novel technique which solves this problem. (ii) We pro-
pose PRIVÉ, a decentralized architecture for preserving the
anonymity of users issuing spatial queries to LBSs. Mobile
users self-organize into an overlay network with good fault
tolerance and load balancing properties. PRIVÉ avoids the
bottleneck caused by centralized techniques both in terms
of anonymization and location updates. Moreover, the state
is distributed in numerous users, rendering the system re-
silient to attacks. Extensive experimental studies suggest
that PRIVÉ is applicable to real-life scenarios with large
populations of mobile users.

1. Introduction

The increased popularity of mobile communication de-
vices with embedded positioning capabilities (e.g., GPS,
RFID) has triggered the development of location-based ap-
plications. General Motor’s OnStar navigation system, for
example, combines the vehicle’s position with real-time in-

formation to avoid traffic jams and automatically alerts the
authorities in case of an accident. More applications based
on the users’ location are expected to emerge with the ar-
rival of the latest gadgets (e.g., iPAQ hw6515, Mio A701)
which combine the functionality of a mobile phone, PDA
and GPS receiver.

Consider the following scenario: Bob uses his GPS en-
abled mobile phone to ask the query “Find the nearest hos-
pital to my present location”. This query can be answered
by a Location-Based Service (LBS) in a public server (e.g.,
Google Maps), which is not trusted. To preserve his pri-
vacy, Bob does not contact the LBS directly. Instead he
submits his query via an intermediate trusted server which
hides his ID (services for anonymous web surfing are com-
monly available nowadays). However, the query still con-
tains the exact coordinates of Bob. One may reveal sensitive
data by combining the location with other publicly available
information. If, for instance, Bob uses his mobile phone
within his residence, the untrustworthy owner of the LBS
may infer Bob’s identity and speculate that he suffers from
a medical condition.

In practice, users are reluctant to access a service that
may disclose sensitive information (e.g., corporate, mili-
tary), or their political/religious affiliations and alternative
lifestyle. To preserve privacy in LBSs, recent research fo-
cused on adapting the well established K-anonymity tech-
nique to the spatial domain. K-anonymity [17, 19] has been
used in statistical databases as well as for publishing census,
medical and voting registration data. A dataset is said to be
K-anonymized, if each record is indistinguishable from at
least K−1 other records with respect to certain identifying
attributes. In the LBS domain, a similar idea appears in
the work of Ref. [8, 9]. Both approaches employ spatial
cloaking to conceal the location of the user: Instead of re-
porting the exact coordinates to the LBS, they construct an
Anonymizing Spatial Region (K-ASR) which encloses the
locations ofK−1 additional users. Ref. [12, 15] extend this
method by proposing a framework for the entire process of
query anonymization in LBSs.

1

All existing approaches utilize a centralized anonymizer.
This is a trusted server that acts as an intermediate tier be-
tween the users and the LBS. All users subscribe to the
anonymizer and continuously report their location while
they move. Each user sends his query to the anonymizer,
which constructs the appropriate K-ASR and contacts the
LBS. The LBS computes the answer based on the K-ASR,
instead of the exact user location; thus, the response of the
LBS is a superset of the answer. Finally, the anonymizer
filters the result from the LBS and returns the exact answer
to the user.

Our work is motivated by the following shortcomings
of existing anonymization approaches: (i) The central-
ized anonymizer is a bottleneck due to the handling of all
query requests and the required post-processing, in addi-
tion to the frequent updates of user locations. Moreover, the
anonymizer is a single point of failure; the system cannot
function without it. (ii) The complete knowledge of the lo-
cations and queries of all users is a serious security threat, if
the anonymizer is compromised. Even if there is no attack,
the centralized anonymizer may be subject to governmental
control, and may be banned or forced to disclose sensitive
user information (similar to the legal case of the Napster
file-sharing service). (iii) Independent of the centralized ar-
chitecture, the hierarchical partitioning method for K-ASR
construction [9, 15] may fail to provide anonymity under
certain conditions (see Section 3).

In this paper, we propose PRIVÉ, a distributed architec-
ture for anonymous location-based queries, which solves
the problems of existing systems. Our contributions are:
(i) We develop a superior K-ASR construction mechanism
based on the Hilbert space-filling curve, that guarantees
anonymity even if the attacker knows the locations of all
users. (ii) We introduce a distributed protocol used by mo-
bile entities to self-organize into a fault-tolerant overlay net-
work. The structure of the network resembles a distributed
B+-tree (each mobile user corresponds to a data point),
with additional annotation to support efficiently the Hilbert-
based K-ASR construction. In PRIVÉ, any participant can
play the role of the anonymizer. Therefore, the bottleneck
of the centralized server is avoided. Moreover, since the
status of the system is distributed, PRIVÉ is resilient to at-
tacks. (iii) We also conduct an extensive experimental eval-
uation. The results confirm that PRIVÉ achieves efficient
anonymization and load balancing with low maintenance
overhead, while being fault-tolerant. Therefore, it is scal-
able to a large number of mobile users.

The rest of the paper is organized as follows: Section 2
discusses the architecture of PRIVÉ. In Section 3, we in-
troduce our Hilbert-basedK-ASR construction mechanism,
whereas in Section 4 we describe the distributed protocol
of the overlay network. Section 5 presents the experimental
evaluation of our system. A brief survey of the related work

Figure 1. Architecture of PRIVÉ

is included in Section 6. Finally, Section 7 concludes the
paper and discusses directions for future work.

2. System Architecture

Fig. 1 depicts the architecture of PRIVÉ. We assume a
large number of users who carry mobile devices (e.g., mo-
bile phones, PDAs) with embedded positioning capabilities
(e.g., GPS). The devices have processing power and ac-
cess the network through a wireless protocol such as WiFi,
GPRS or 3G. Moreover, each device has a unique network
identity (e.g., IP address) and can establish point-to-point
communication (e.g., TCP/IP sockets) with any other de-
vice in the system through a base station (i.e., the two de-
vices do not need to be within the range of each other). For
security reasons, all communication links are encrypted.

In addition, we assume the existence of a trusted central
Certification Server (CS), where users are registered. Prior
to entering the system, a user u must authenticate against
the CS and obtain a certificate. Users having a certificate
are trusted by all other users. Typically, a certificate is valid
for several hours; it can be renewed by recontacting the CS.
Apart from the certificate, the CS returns to u the IP ad-
dresses of some users who are currently in the system. u
employs this list to identify an entry point to the distributed
network. Note that the CS does not know the locations of
the users and does not participate in the anonymization pro-
cess.

Each user corresponds to a peer. Peers are grouped into
clusters, based on their location. Within each cluster, peers
elect a cluster head, and the set of heads is grouped recur-
sively to form a tree. To achieve load balancing, the cluster
heads change periodically in a round-robin manner. By def-
inition, cluster heads may belong to multiple levels of the
tree. In Fig. 1, for instance, there is a two-level hierarchy,
where users u2, u3, u8 are the heads of cluster C1, C2 and
C3, respectively; also u8 is the head of the upper layer clus-
ter C4.

Typically users ask Range or Nearest-Neighbor (NN)
queries with respect to their position (e.g., “find the near-

2

est hospital”). Based on individual criteria, users select the
required degree of anonymity K. K may vary among con-
secutive queries. Users collaborate to achieve spatial cloak-
ing and construct theK-ASR in a distributed manner. Then,
a random user u′ is selected to send the anonymized query
to LBS, filter the result set and forward the actual answer to
the query initiator. The result set from the LBS is a superset
of the actual answer and its cardinality depends on the size
of the K-ASR.

PRIVÉ can collaborate with various untrustworthy spa-
tial databases providing LBSs. The only requirement from
the LBSs is to support NN queries of regions (i.e.,K-ASRs)
as opposed to points. Intuitively, the nearest neighbors of a
region are all the data objects inside the region plus the NNs
of every point in the perimeter of the region. Query pro-
cessing at the LBS [10, 12, 15] is orthogonal to our work
but outside the scope of this paper.

3. Spatial K-anonymity

A user u who issues a location-based query is considered
to be K-anonymous if his location is indistinguishable from
the location of K−1 other users [9]. Formally:

Definition [Spatial K-anonymity] Let H be a set of K
distinct user entities with locations enclosed in an arbi-
trary spatial region K-ASR. A user u ∈ H is said to pos-
sess K-anonymity with respect to K-ASR if the probabil-
ity P of distinguishing u among the other users in H does
not exceed 1/K. We refer to K as the required degree of
anonymity.

Note that: (i) The definition assumes a snapshot of the
users’ locations. Although PRIVÉ supports user mobility,
K-anonymity is undefined across multiple snapshots. (ii)
Spatial K-anonymity does not depend on the size of the K-
ASR. In the extreme case, the K-ASR can degenerate to a
point, ifK users are at the same location. In general, we pre-
fer small K-ASRs, in order to minimize the processing cost
at the LBS and the communication cost between the LBS
and the mobile user. Nevertheless, some applications im-
pose a lower bound on the size of the K-ASR [15]. In such
a case, the K-ASR can be trivially enlarged to satisfy the
lower bound, by scaling it proportionally in all directions.

A naı̈ve K-ASR construction algorithm would choose a
randomK-ASR. However, if theK-ASR is too small it may
contain fewer than K users, whereas if it is larger than nec-
essary, it will affect the query cost. Constructing theK-ASR
in the neighborhood of the querying user u (e.g., using the
K nearest neighbors of u) is also inappropriate, because u
tends to be closest to the center of the K-ASR, thus easily
identified.

An optimal K-ASR construction algorithm must parti-
tion the user population into static buckets of K users, such

Figure 2. Limitations of QUADASR, K=2

that the sizes of the associated K-ASRs are minimized. Ev-
ery query from users that reside in the same bucket will have
the same associated K-ASR; therefore, the probability of a
specific user issuing a query is 1/K. This is a sufficient con-
dition to guarantee K-anonymity. Even if the frequency of
queries varies among users, an attacker will not be able to
infer which user issued a particular query.

Static partitioning has three drawbacks: (i) Calculating
the optimal partitioning is an NP-Hard problem [13]. (ii)
Due to the fixed partitions, requests with anonymity degree
larger than K cannot be satisfied. Moreover, larger parti-
tions would increase the average size of the K-ASRs, af-
fecting severely the processing cost. (iii) Finally, and more
importantly, we assume mobile users, therefore static parti-
tioning is not applicable.

In the following, we consider methods for on-the-fly
K-ASR construction. First, we explain the drawbacks of
existing approaches. Then, we propose a novel method,
HILBASR, which guarantees anonymity.

3.1 Drawbacks of Existing Approaches

The anonymization technique of Ref. [9] builds the K-
ASR of a given location using the PR-Quad-tree. When user
u issues a query, the Quad-tree is traversed until a quadrant
which contains u and less than K−1 other users is found.
The parent of that quadrant is returned as the K-ASR. A
similar idea is used in Ref. [15]. We refer to this technique
as QUADASR.

There are two drawbacks of QUADASR: (i) It may fail
to achieve anonymity for some user distributions. Consider
the example of Fig. 2. Each user resides in his own quad-
rant identified by its lower-left and upper-right coordinates.
When any of the users u1, u2 or u3 issues a query with de-
gree of anonymity K=3, the quadrant q2 = ((0, 2), (2, 4))
which encloses u1...3 will be returned as theK-ASR. On the
other hand, when the isolated user u4 issues a query with
K=3, the larger quadrant q1 = ((0, 0), (4, 4)) is returned.
Note that if 1 < K ≤ 3, the only reason to return quadrant
q1 is that u4 issued a query. If an attacker knows the loca-
tions of the users in the area1, he will be able to pinpoint u4

as the query origin. (ii) A second drawback of QUADASR
is that due to the non-uniform distribution of user locations,

1By triangulation, phone companies can estimate the location of a user
within 50-300 meters, as required by the US authorities (E911).

3

Figure 3. HILBASR, K=3 and K=4

the number of users enclosed by a K-ASR may grow much
larger than K (as for u4 in the previous example). This cor-
responds to larger spatial extent of theK-ASR, hence higher
processing cost.

Both problems also exist if, instead of the Quad-tree, we
use data partitioning spatial indices such as R-trees. Next,
we describe our HILBASR method, which overcomes the
above drawbacks.

3.2 The HILBASR Algorithm

Our HILBASR algorithm guarantees that the probabil-
ity of identifying the query initiator is always bounded by
1/K, even if the attacker knows the locations of all users.
HILBASR uses the Hilbert [6] ordering to group users into
buckets ofK. The Hilbert space filling curve transforms the
2-D coordinates of each user into an 1-D value. With high
probability, if two points are in close proximity in the 2-D
space, they will also be close in the 1-D transformation.

To compute the K-ASR, HILBASR employs an appro-
priate partitioning scheme that supports users’ mobility and
varying K with minimal overhead. Intuitively, HILBASR
computes and sorts the Hilbert values of all users. Then,
the algorithm conceptually groups the sorted Hilbert values
into K-buckets that contain K users, except from the last
one which may contain up to 2·K−1 users. Let us consider
a user u posing a query with anonymity degree K. To com-
pute the K-ASR of user u, HILBASR computes the Hilbert
value H(u) of u and finds the K-bucket that H(u) belongs
to. The minimum bounding box (MBB) of all the users in
the K-bucket corresponds to the K-ASR.

For example, in Fig. 3, we illustrate the position of 10
users and their sorted Hilbert values. To compute the 3-
ASR of user u9, HILBASR first finds the K-bucket which
H(u9) belongs to. In our case, this consists of four users,
u8, u9, u10 and u7. Then, HILBASR returns the MBB of
these users. Thus, the 3-ASR of user u9 is area A3. Simi-
larly, the 4-ASR of user u5 is area A4.

Note that for a given snapshot, HILBASR returns the
same K-ASR for all users in the K-bucket. This makes
the K users of the K-bucket indistinguishable from each
other. Thus, the probability of identifying the query initiator
is bounded by 1/K.

As mentioned earlier, techniques that use fixed buckets

Figure 4. HILBASR with Annotated B+-tree

suffer from lack of flexibility in accommodating queries
with varying K. Our method overcomes this limitation by
avoiding to materialize the K-buckets. Instead, it main-
tains a balanced sorting tree, which indexes the Hilbert val-
ues of users’ locations. Let a user u initiate a query with
anonymization degreeKu. Our algorithm performs a search
for H(u) in the index and computes ranku, which corre-
sponds to the position of H(u) in the in-order traversal of
the tree. From ranku, we calculate the start and end posi-
tions defining the K-bucket which includes H(u), as:

start = ranku − (ranku mod Ku)
end = start +Ku − 1 (1)

The complexity of the in-order tree traversal is O(N),
where N is the number of indexed users. To compute
ranku efficiently, we use an annotated B+-tree (similar to
the aR-tree [16]), where each tree node stores the number
of leaf nodes in each of its subtrees. Consider the exam-
ple in Fig. 4. For each internal node entry e, we store the
number of leaf entries that are rooted at e; annotation coun-
ters are shown in brackets. Assume we want to determine
a K-ASR for entry 37, with K=6. First, we compute the
rank of entry 37 (Fig. 4a): we follow the path in the tree
from root to the leaf that contains 37, and at each internal
node we add to the rank value the sum of all counters in the
node situated at the left of the followed pointer. At the leaf
layer, we add to the rank the local rank value of key 37 in
its leaf, and obtain rank 8 (ranks start from 0). Then, we
calculate the bucket delimiters using Eq. (1), and obtain the
interval [6..11]. Next (Fig. 4b), we perform a range search
to locate the entries with ranks [6..11]. Observe that this
operation uses the annotation, rather that the B+-tree keys.
Sub-ranges at each level are determined by splitting the ini-
tial range based on subtree sizes; the offset for the recursive
call at entry e is determined as the initial start value minus
the sum of counters of all entries in the node preceding e.
The resulting K-ASR is highlighted in the diagram.

The data structure is scalable, since the complexity of
constructing the K-ASR is O(log N+ K), whereas search,
insert and delete cost O(log N). Therefore, HILBASR is

4

applicable to large numbers of mobile users who update
their position frequently and have varying requirements for
the degree of anonymity K.

4. Distributed Anonymization in PRIVÉ

In this section, we introduce PRIVÉ, a distributed proto-
col which supports decentralized query anonymization us-
ing the HILBASR algorithm. PRIVÉ mimics the functional-
ity of a B+-tree in a distributed setting. Each mobile user
u has an associated index entry consisting of an ID (e.g., IP
address), and the Hilbert valueH(u) of his location as index
key. A node (leaf or internal) in the B+-tree, corresponds
to a cluster of users, with size bounded between α and 3α,
where α is a fixed system parameter. We use the terms clus-
ter and index node interchangeably. The maximum cluster
size is 3α, instead of the usual 2α for B+-trees, to prevent
cascading splits and merges (i.e., a split followed by a user
departure), which are costly in the distributed environment.

Every user belongs to a leaf level cluster (level 0) of the
B+-tree, and the contents of each cluster are disjoint (see
Fig. 5). The users of each cluster C elect a leader called
head(C). The head (marked with an asterisk) handles all
index operations on behalf of the users in the cluster. Clus-
ter heads are recursively grouped to form a tree; therefore,
they belong to multiple levels of the tree. We denote by
Ci

u, the level i cluster which includes user u. In our exam-
ple, user ua is the head of cluster C0

a at level 0. The same
user is also the head of cluster C1

a and C2
a , therefore it be-

longs to every level of the tree. There is a single cluster
at the top of the hierarchy, which we refer to as top. The
cluster head of top is denoted by root (ua in the example).
In our protocol description, we use remote procedure call
convention to specify interactions between users. The nota-
tion u.func(params) denotes the invocation of subroutine
func with parameters params at user u.

Each cluster is associated with its state information. The
state of a leaf level cluster consists of an ordered list of user
key/address pairs and user coordinates, required to deter-
mine the K-ASR bounding box. The state of an upper layer
cluster with m elements consists of a list of m user ad-
dresses, separated by m − 1 key values used to direct the
search; the process is similar to a B+-tree, with the role
of memory pointers fulfilled by the IP addresses of users.
Each internal node entry is annotated with a counter (de-
picted in parenthesis) representing the total number of users
at the subtree under the entry. Only the head needs to know
the state of the cluster. However, in our implementation,
we replicate the state to every user within the cluster, in or-
der to improve fault tolerance. In Section 5, we discuss the
tradeoff between fault tolerance and maintenance cost. The
PRIVÉ hierarchy has at most logα N layers, where N is the
total number of users. Since cluster size is bounded, and a

Figure 5. Distributed Index Structure, α=2

user may belong to at most one cluster at each level, there
is an upper bound of O(α logα N) on the membership state
stored at a user.

4.1 Index Operations

The index supports four operations: join, departure, re-
location and anonymization. We denote by K-request a re-
quest for a K-ASR with anonymization degree K. We es-
tablish two performance metrics for PRIVÉ: (i) latency: the
number of hops an index operation requires to complete.
The latency is equal to the longest tree path followed as a
result of the operation. Multiple paths may be followed in
parallel during an operation. (ii) communication cost: the
number of messages triggered by an index operation.
Join. User join corresponds to a B+-tree insertion opera-
tion. Newly joining users authenticate at the certification
server and receive the address of a user already inside the
system. Without loss of generality, we assume that join-
ing users know the root, since the root can be reached
from any user in O(logα N) cost. We stress that since
we require an index structure with annotation, in order to
determine the absolute ranks of users, all joins must oc-
cur through the root. To avoid overloading the root, we
devise a load-balancing mechanism (Section 4.3). User
join has O(logα N) complexity in terms of latency and
O(logα N + α) communication cost; the second term is for
updating the cluster state in all the users of the affected clus-
ter.

Consider user uy with Hilbert value 46 that joins the in-
dex of Fig. 5: uy contacts ua (at the root level) who for-
wards the join request to ub and updates ub’s annotation
counter in C2

a to 14. ub then forwards the request to uh,
whose annotation counter in C1

b is updated to 4. Fig. 6(a)
shows the join outcome. User join may trigger a cluster
split, handled similarly to a B+-tree node split; the head
initiating the split leads one of the resulting clusters, and
appoints a random initial cluster node to lead the other.
Departure (informed). User departure is similar to a B+-
tree deletion. The effect of deletion must be propagated
to root to update the annotation counters. Deletion has
O(logα N) latency and O(logα N + α) communication
cost. If cluster size decreases below α, the cluster head trig-

5

Figure 6. User Join and Relocation, α=2

gers a merge operation with the neighbor leaf-level cluster
that has fewer members (to avoid a cascaded split). The
head of the resulting cluster can be any of the initial heads,
except if one of them is also head at the higher level. If so,
it will be chosen as cluster leader, to minimize membership
changes.
Relocation. User mobility is treated as an entry update,
which in a B+-tree translates into a deletion and an inser-
tion. Since users are likely to change location often, we
optimize this process by performing local reassignment of
users to nearby clusters. Due to the good locality proper-
ties of Hilbert ordering, the number of clusters involved in
relocation is likely to be small. Annotation counter updates
are only performed by affected clusters; this way, updates
are not propagated all the way to the root. The upper bound
on relocation latency is O(logα N), but in most cases relo-
cation only involves a few clusters, at the low layers of the
index. The pseudocode for user relocation is given in Fig. 7.

u.RelocateMyself() /*executed by moving user*/
1. determine new key valueHu = Hilbert(u.x, u.y)
2. call head(C0

u).Relocate(u,Hu,0)
u.Relocate(relocated user,H,l)
1. if (H in indexed key range at level l)
2. if (l = 0)
3. add relocated user to leaf user list; return
4. else
5. let n be the next hop forH
6. call n.Relocate(relocated user,H,l− 1)
7. else call head(parent(Cl

u)).Relocate(relocated user,H,l + 1)

Figure 7. User Relocation
Consider user us from the Fig. 5 that relocates to a new

position with Hilbert value 60. He forwards the request to
ua = head(C0

s). ua cannot keep us within the same leaf
entry, since the new value is outside the interval [49..55].
Since ua = head(C1

a), with no additional message, ua de-
cides that us can be relocated to C0

f , forwards the request
to uf and updates the annotation counters of ua and uf ac-
cordingly. Fig. 6(b) illustrates the relocation outcome.
K-request. A K-request operation corresponds to the
HILBASR algorithm described in Section 3. Consider the
example in Fig. 8, where user um issues a K-request with
K=6. The request follows the path: um → ud → ub → ua

(solid arrows in Fig. 8(a)). The root ua determines the K-
bucket (i.e., start = 6, end = 11) and sends a K-ASR

Figure 8. K-request, α=2, K=6

request to ub (dotted arrows in Fig. 8(a)). ub sends in par-
allel requests for partial K-ASRs with ranges [6..6], [7..9]
and [10..11] to ud, ue and uh, respectively. ub, which is
the head of the lowest-layer cluster that completely covers
the K-bucket (shown hashed in Fig. 8(b)) collects the par-
tial K-ASRs and assembles the final query K-ASR. Note
that, the cluster head that covers the K-bucket sustains the
highest load among all other users involved in the query.
This potential load imbalance issue is addressed in Sec-
tion 4.3. A K-request has O(logα N) + O(logαK) latency
and O(logα N) + O(K/α) cost. The pseudocode for K-
request is shown in Fig. 9.

u.K-request() /*executed by query source*/
1. determine key valueHu = Hilbert(u.x, u.y)
2. call head(C0

u).ForwardRequest(Hu, 0, 0)
u.ForwardRequest(H, count, l)
1. if (l = 0) count = rankH in leaf entry
2. else count+ = sum of annotation counters of keys < H
3. if (u is root)
4. compute start and end using eq (1)
5. K-ASR = root.findMBR(start, end, root height)

6. else call head(Clevel+1
u).ForwardRequest(H, count, l + 1)

u.findMBR(start,end,l)
1. if (l = 0) /*leaf level*/
2. return MBR of members with local rank in [start,end]
3. find set of next hops U for range [start,end]
4. MBR = ∅
5. for u′ ∈ U
6. MBR = MBR ∪ u′.findMBR(startu′ , endu′ , l − 1)
7. return MBR

Figure 9. K-request

LBS communication. Once the K-ASR is determined, the
anonymized query must be sent to LBS; this can be done by
any user. Nevertheless, the communication with the LBS
is expensive, since the response is a superset of the actual
answer and may contain redundant information. This trans-
lates to financial cost, since mobile phone operators typi-
cally charge users by the amount of transferred data. There-
fore, a fair solution would require the query initiator (i.e.,
um in our example) to handle the communication with the
LBS. However, this would reveal the identity of um. In our
implementation, we adopt the following solution: once the
K-bucket is selected, we choose a random user from within
the bucket to contact the LBS. Therefore, the probability
of identifying um is still 1/K, and at the same time um is

6

more likely to handle his own request, than if a random user
from the entire system were chosen. The potential unfair-
ness among the users of the K-bucket may be handled by a
credit mechanism; this is outside the scope of the paper.

In Fig. 8(b), user un is randomly selected to communi-
cate with the LBS. The selection process is integrated in
the K-request process as follows: ub who is the K-ASR-
dominating user, generates a token and randomly passes it
to only one of the partialK-ASR requests to the lower layer.
The process is repeated recursively down to the leaf layer.
There, un is assigned to contact the LBS, and its IP address
is sent back to ub together with the partialK-ASR. Then, ub

sends one additional message to inform un about the entire
K-ASR. un queries LBS, filters the result and returns the
exact answer to the query initiator um.

4.2 Fault Tolerance

PRIVÉ implements a soft-state based mechanism to deal
with user failures or disconnections without notification.
Each cluster leader sends periodically (i.e., every δt sec-
onds) a membership update message to all cluster members.
The message contains the membership list of the current
cluster C and that of parent(C). Cluster members respond
to these messages; if a cluster member does not respond
to two consecutive messages, it is considered disconnected
and removed from the cluster. The change is broadcast by
the cluster head to the remaining cluster members.

If a non-head cluster member u does not receive a mem-
bership update from its head for a 2δt period, it initiates
a leader election process. Alternatively, when u attempts
to initiate a operation such as query or relocation, and can-
not contact the cluster head for two consecutive attempts,
it triggers the leader election protocol without waiting for
the timer to expire. u checks the membership it had at the
last update, and chooses as leader (i.e., new head) the user
with the smallest identifier. It then sends a transfer head
message to new head, which in turn sends a member-
ship update message to all cluster users and also contacts
head(parent(C)) to notify for the change in leadership.
new head will replace the old head in all layers where the
latter was leader before disconnection.

4.3 Load Balancing

The hierarchical structure can cause significant differ-
ences between the load sustained by cluster heads and or-
dinary cluster members, as well as among cluster heads at
different layers of the hierarchy2. To alleviate the inher-
ent imbalance, we propose a cluster head rotation mech-
anism, where users take turn in fulfilling the cluster head
role. Since the promotion to cluster head translates into

2The issue of load imbalance due to LBS communication is not a result
of internal index operations, and has been addressed in Section 4.1.

Figure 10. Load balancing mechanism

presence at a higher layer of the hierarchy, the rotation also
ensures that users equally share the load at different layers.

Rotation is triggered when a node reaches a certain load
threshold, denoted by load unit. In wireless devices the
communication cost is dominant. It is also important from
the user’s perspective, since mobile phone operators charge
by the amount of transferred data. Therefore, in PRIVÉ the
load is best represented by the number of messages sent and
received by the user.

When a user u reaches one load unit, it triggers a head
rotation in all the clusters it currently heads, starting with
its highest layer. For each node along the path to its level 0
cluster, the member with the least load is appointed as new
head. Note that, since u stores the membership state about
all clusters it belongs to at different layers, the appointment
of a new leader can be done directly by u, without the need
for a complex protocol or additional messages. Choosing
the cluster member with the lowest load prevents the newly
appointed head to start a fresh rotation soon after promo-
tion.

Fig. 10 illustrates the rotation mechanism. For simplic-
ity, all clusters have size 2; cluster heads are marked with
an asterisk. Assume all queries originate at user ud (marked
with an arrow) with K=4. After user ua reaches one load
unit, it hands over the root role to user ue (at layer 2) from
the right-hand subtree. Also, at layer 1, user uc becomes the
head and is automatically promoted to layer 2. Similarly, at
layer 0, user ub becomes the head and is promoted to layer
1; the result is shown in Fig. 10(b)). Next, node uc reaches
its load unit, because more requests pass through it (it must
inject queries and collect partial K-ASRs). User uc triggers
a rotation, but at layer 1, appointing ub as cluster head (see
Fig. 10(c)). Subsequently, user ub may be the next one to
reach the load threshold, and start a new rotation in the left
subtree. Observe that at step (d), the left subtree has already
performed a complete rotation round, while the right sub-
tree has only performed one rotation. Hence, our rotation
mechanism alleviates hotspots (an entire subtree shares the
load generated by user ud) and at the same time provides a
degree of fairness, not allowing a localized hotspot to affect
a large partition of the index.

The granularity of load unit choice is important in prac-
tice, in order to achieve a good tradeoff between load bal-
ancing and cost, since a rotation may incur a number of
messages as large as O(α logα N). We further discuss this
issue in Section 5.

7

 0

 20K

 40K

 60K

 80K

 100K

 20 40 60 80 100 120 140 160

Κ

Area

hilbASR
quadASR

(a) Varying K, 10k users

 0

 50K

 100K

 150K

 200K

 250K

 300K

 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Ν

Area
hilbASR

quadASR

(b) K=80, varying N

Figure 11. K-ASR area

5. Experimental Evaluation

We present the experimental evaluation of the HILBASR
anonymization technique and PRIVÉ anonymization sys-
tem. To evaluate PRIVÉ, we implemented an event-driven
packet-level simulator in C++. Since we are mostly inter-
ested in the overlay-layer performance, we consider a full
mesh topology with lossless 500ms round-trip time links
between any pair of users. Our workload consists of user lo-
cations and movement patterns, and is created using IAPG
[5] which models user movement on public road networks.
For user movement, we consider velocities ranging from 18
to 68km/h. We present our results for a data set consist-
ing of the San Francisco bay area (Fig. 12(a)), with num-
ber of users N varying from 100 to 10000. We varied the
anonymization degree K from 10 to 160. We considered
both uniform and Zipf distribution of queries over the users.

In the first experiment, we compare HILBASR against
QUADASR in terms of spatial extent (i.e., area) of the gen-
erated K-ASR. We consider a time snapshot of user loca-
tions and generate a number of queries equal to population
size N . Each query is initiated by a random user. Fig. 11(a)
shows the results for varyingK and 10K users. HILBASR is
better in all cases. A similar trend was observed for K-ASR
perimeter. In Fig. 11(b) we set K=80 and vary the number
of users. The decrease in K-ASR size with increasing N is
explained by the higher user density in the same dataspace
(i.e., K users can be located in a smaller region). HILBASR
again outperforms QUADASR in terms of K-ASR extent,
which translates into reduced execution cost at the LBS and
communication cost between the LBS and the user. Further-
more, HILBASR guarantees anonymity in all cases. There-
fore HILBASR is superior to QUADASR in all aspects (Ref.
[12] gives more detailed experimental results).

The following experiments evaluate the performance of
PRIVÉ for user join/departure, K-ASR construction, user
mobility, fault-tolerance and load-balancing.
Join and Departure. In a system with N users, we per-
form 0.1N random user joins, followed by 0.1N random
user departures. Fig. 12(b) shows the join latency measured
as hop count from the time a user issues a join request un-
til it receives a join response message from its leaf-level
head. We observe that the latency is lower than the theo-
retical 1 + logα N , as a user may appear in multiple levels

and can avoid sending redundant messages to himself. The
communication cost (i.e., total messages) per join and de-
parture operation (Fig. 12(c)) varies linearly with α, since
every join/departure translates into a membership update
broadcast message within one leaf-level cluster. Note the
role of α in the latency-cost tradeoff: an increase of α de-
creases latency as logα N , but triggers a linear cost increase
in membership notification. A larger α also increases the
cost of periodic cluster membership maintenance.
K-request. Fig. 12(d) and 12(e) show the variation of
K-request latency and communication cost with α, K=40.
Larger α decreases the latency as the height of the in-
dex decreases. The communication cost also decreases, as
fewer leaf-level cluster heads need to be contacted to build
the K-ASR. However, the choice of α cannot grow very
large from index maintenance considerations. Fig. 12(f)
and 12(g) show the latency and communication cost vari-
ation with anonymization degree K, α = 5. Latency is only
marginally affected by K (the dominant factor in latency is
logα N , since in practice K¿ N), while the communica-
tion cost grows linearly with K. The percentage of the user
population involved in answering a single K-request opera-
tion is shown in Fig. 12(h) and 12(i). For small N values,
at most 2% of all users are needed to answer a K-request,
while for larger N , less than 0.5% of the users are required.
Relocation. PRIVÉ addresses user mobility by using an in-
dex update algorithm that attempts to solve relocation at the
lowest levels of the hierarchy, in order to reduce both la-
tency and communication cost. In our simulated scenario,
we consider 10000 users across 20 consecutive time frames,
with half of the indexed users moving at each time frame
according to a pattern generated by IAPG [5]. We consider
three velocities: 68, 40 and 18km/h. Fig. 12(j) and 12(k)
show that relocation is efficiently handled: for the moderate
α = 10 value, the relocation is done on average in 2.5 hops
for fast-moving users and 1.5 hops for slow-moving users.
The dominant communication cost is that of the member-
ship change propagation; for α = 10 this cost is roughly a
quarter that of an index deletion followed by insertion for
the 68km/h case, and 1/8 for 18km/h. Fig 12(l) shows the
frequency of relocations completed at various levels of the
hierarchy for a 6-level, α = 3, 10000 users system. Most
relocations are solved at the low levels of the hierarchy: for
slow movement, 70% are solved at the leaf level and 86%
at levels 0 and 1; for fast movement, 32% of relocations are
completed at the leaf level, 63% at levels 0 and 1, and 86%
at levels 0, 1 or 2.
Fault-tolerance. Starting with a system having correct
cluster membership system, we fail simultaneously 10, 20
or 30% of the nodes. We use maintenance timer values of
30 seconds for refreshing cluster membership and 60 sec-
onds for purging a failed member. Fig. 12(m) shows the
evolution of membership state correctness over time (1 rep-

8

(a) San Francisco Bay Area

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20

α

Latency
N=10000
N=1000
N=100

(b) Join Latency vs α

 0

 10

 20

 30

 40

 50

 5 10 15 20

α

Cost

N=10000
N=1000
N=100

(c) Join/Leave Cost vs α

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20

α

Latency

N=10000
N=1000
N=100

(d) Query Latency vs α

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20

α

Cost
N=10000
N=1000
N=100

(e) Query Cost vs α

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 20 40 60 80 100 120 140 160

Κ

Latency

N=10000
N=3000
N=1000

(f) Query Latency vs K

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 20 40 60 80 100 120 140 160

Κ

Cost

N=10000
N=3000
N=1000

(g) Query Cost vs K

 0

 0.5

 1

 1.5

 2

 20 40 60 80 100 120 140 160

Κ

Nodes(%)

N=10000
N=3000
N=1000

(h) Percentage vs K

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 5 10 15 20

α

Nodes(%)

N=10000
N=3000
N=1000

(i) Percentage vs α

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 5 10 15 20

α

Latency
68km/h
40km/h
18km/h

(j) Relocation Latency

 4
 6
 8

 10
 12
 14
 16
 18
 20

 5 10 15 20

α

Cost
68km/h
40km/h
18km/h

(k) Relocation Cost

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 1 2 3 4 5

Level

Frequency
68km/h
40km/h
18km/h

(l) Relocation Level

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200

Time(sec)

Membership Correctness

10%
20%
30%

(m) Failure Recovery

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2K 4K 6K 8K 10K

Ν

Load CDF

No Rotation
Rotation-unif

Rotation-Zipf(0.8)
Ideal

(n) Node Load CDF

 0

 50

 100

 150

 200

 250

 300

 350

 0 2K 4K 6K 8K 10K

Ν

Absolute Load

Uniform
Zipf(0.8)

(o) Absolute Node Load

Figure 12. PRIVÉ Experimental Evaluation

resents completely correct state). The system recovers to a
correct state within 3 purge cycles (138 sec) for 10% failure
and 4 purge cycles (197 sec) for 30% failure.

Load-balancing. We measured the load incurred by
each user for a 10000 users system, α = 5, K=80, load
unit = 200 messages and a simulated time of 1 hour, during
which an average of 8 queries/user were generated. We con-
sidered both uniform and skewed (Zipf 0.8) query source
distribution. Fig. 12(n) shows the cumulative distribution
function (CDF) of sorted user loads. The load is highly
unbalanced if no rotation is performed, with 10% of users
sustaining more than 80% of the load. With rotation, for
uniform query distribution, the load is close to the ideal one
(i.e., diagonal line). For skewed query distribution, most of
the users share equal load, while part of the users (roughly
10%) share a slightly higher load, as dictated by the fairness
requirement discussed in Section 4.3. This is illustrated bet-
ter in Fig. 12(o) which shows the absolute load of each user.

6. Related Work

K-anonymity was first discussed in relational databases
where published statistical data (e.g., census, medical)
should not be linked to specific persons. Samarati and
Sweeney [17, 19] proposed the following definition: A rela-
tion satisfiesK-anonymity if every tuple in the relation is in-
distinguishable from at least K−1 other tuples with respect
to every set of quasi-identifier attributes. Quasi-identifiers

are sets of attributes (e.g., date of birth, gender, zip code)
which can be linked to publicly available data to uniquely
identify individuals. Two techniques are used to transform a
relation to a K-anonymized one: Suppression, where some
of the attributes or tuples are removed and generalization,
which involves replacing specific values (e.g., phone num-
ber) with more general ones (e.g., only area code). Both
techniques result to information loss. Ref. [4] and Ref. [13]
discuss efficient algorithms for anonymizing an entire rela-
tion while preserving as much information as possible. In
Ref. [20] the authors consider the case where each individ-
ual requires a different degree K of anonymity, while Ag-
garwal [1] shows that anonymizing a high-dimensional re-
lation results to unacceptable loss of information due to the
dimensionality curse. Finally, Machanavajjhala et al. [14]
propose `-diversity, an anonymization method under the as-
sumption that the attacker has domain-specific knowledge.

K-anonymity has also been adopted in the LBS domain:
in Ref. [8, 9], the location of the user is concealed by con-
structing an Anonymizing Spatial Region (K-ASR) which
encloses the locations of the query source and K−1 ad-
ditional users. However, their methods of K-ASR con-
struction are inefficient, they do not discuss how queries
are executed, and anonymization may fail for some data
distributions. Ref. [12, 15] extend further these ideas and
present a framework for the entire process of anonymization
and query processing at the LBS. Nevertheless, all previous
methods assume a centralized anonymizer, which may be-

9

come a bottleneck or a security threat.
Key and range search has been studied extensively in

distributed environments. Several structured Peer-to-Peer
systems (e.g, Chord [18]) support distributed key search
with O(log N) complexity. Closer to our work, the P-
tree [7] supports range queries by embedding a B+-tree
on top of an overlay network. No global index is main-
tained; instead each node maintains its own B+-tree-like
structure. BATON [11] also addresses range queries, by em-
bedding a balanced binary tree onto an overlay network. It
uses additional cross-links to prevent hotspots, and achieves
O(log N) complexity for both search and maintenance. The
drawback of all these systems is that they cannot support ef-
ficiently node annotation. However, annotation is essential
for our HILBASR algorithm. PRIVÉ, on the other hand,
supports search, maintenance and annotation in O(log N).

Hierarchical clustering in distributed environments has
been an active research topic in recent years. In Ref. [3],
a hierarchical-clustering routing protocol for wireless net-
works is presented. The NICE project [2] proposes a scal-
able application-layer multicast protocol, based on deliv-
ery trees built on top of a hierarchically connected control
topology. Nodes participating in a multicast group are orga-
nized into a multi-layer hierarchy of clusters with bounded
size. NICE trees obtain delays in the order of O(log N),
where N is the size of the multicast group, and there is an
upper bound of O(log N) in terms of control state main-
tained per node. PRIVÉ also uses hierarchical clustering
of mobile users, but the requirements of total ordering and
annotation impose particular challenges that have not been
addresses by existing research.

7. Conclusions

In this paper we introduced PRIVÉ, a distributed system
for query anonymization in LBSs. In PRIVÉ, mobile users
wishing to issue location-based queries, organize them-
selves into a hierarchical overlay network and anonymize
queries in a fully decentralized fashion. PRIVÉ supports
our HILBASR anonymization technique, which guarantees
anonymity under any user distribution. We show experi-
mentally that our system is efficient, scalable, fault tolerant
and achieves load balancing.

LBSs for mobile users are already a reality in Japan,
where most of the new mobile phones contain a positioning
device, and high-speed wireless networks are common. As
such applications gain popularity, privacy and confidential-
ity concerns are expected to rise. In the future, we plan to
address anonymity of continuous spatial queries, and extend
our algorithm to trajectories, as opposed to points. We also
plan to deploy PRIVÉ in infrastructure-less environments,
such as ad-hoc wireless networks (Wi-Fi, Bluetooth), with-
out point-to-point links between all users.

References

[1] C. C. Aggarwal. On k-Anonymity and the Curse of Dimen-
sionality. In VLDB, pages 901–909, 2005.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. In Proc. of ACM SIG-
COMM, 2002.

[3] S. Banerjee and S. Khuller. A Clustering Scheme for Hi-
erarchical Control in Wireless Networks. In Proc. of IEEE
INFOCOM, 2001.

[4] R. Bayardo and R. Agrawal. Data Privacy through Optimal
k-Anonymization. In Proc. of ICDE, pages 217–228, 2005.

[5] T. Brinkhoff. A framework for generating network-based
moving objects. Geoinformatica, 6(2):153–180, 2002.

[6] A. R. Butz. Alternative Algorithm for Hilbert’s Space-
Filling Curve. IEEE Trans. on Computers, pages 424–426,
April 1971.

[7] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram. Querying P2P Networks using P-trees. In Proc. of
WebDB, pages 25–30, 2004.

[8] B. Gedik and L. Liu. Location Privacy in Mobile Systems:
A Personalized Anonymization Model. In Proc. of ICDCS,
pages 620–629, 2005.

[9] M. Gruteser and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and Temporal
Cloaking. In Proc. of USENIX MobiSys, 2003.

[10] H. Hu and D. L. Lee. Range Nearest-Neighbor Query. IEEE
TKDE, 18(1):78–91, 2006.

[11] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: a Balanced
Tree Structure for P2P networks. In Proc. of VLDB, 2005.

[12] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Pre-
serving Anonymity in Location Based Services. Technical
Report TRB6/06, National University of Singapore, 2006.

[13] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito:
Efficient Full-Domain K-Anonymity. In Proc. of ACM SIG-
MOD, pages 49–60, 2005.

[14] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam. l-Diversity: Privacy Beyond k-Anonymity.
In Proc. of ICDE, 2006.

[15] M. F. Mokbel, C. Y. Chow, and W. G. Aref. The New
Casper: Query Processing for Location Services without
Compromising Privacy. In Proc. of VLDB, 2006.

[16] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
Operations in Spatial Data Warehouses. In Proc. of SSTD,
pages 443–459, 2001.

[17] P. Samarati. Protecting Respondents’ Identities in Microdata
Release. IEEE TKDE, 13(6):1010–1027, 2001.

[18] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a Scal-
able Peer-to-Peer Lookup Protocol for Internet Applica-
tions. IEEE/ACM Transactions on Networking, 11(1):17–
32, 2003.

[19] L. Sweeney. k-Anonymity: A Model for Protecting Privacy.
Int. J. of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 10(5):557–570, 2002.

[20] Y. Tao and X. Xiao. Personalized Privacy Preservation. In
Proc. of ACM SIGMOD, 2006.

10

	TRA204.pdf
	Table 1 Datasets

	1:

