

T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l o f C o m p u t i n g
Lower Kent Ridge Road, Singapore 119260

TRB8/04

Modeling Out-of-Order Processors for Software Timing Analysis

Xianfeng LI, Abhik ROYCHOUDHURY and Tulika MITRA

August 2004

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the
author, at the address shown on the cover.

JAFFAR, Joxan

Dean of School

Modeling Out-of-Order Processors for Software Timing Analysis

Xianfeng Li Abhik Roychoudhury Tulika Mitra
School of Computing, National University of Singapore

{lixianfe,abhik,tulika}@comp.nus.edu.sg

Abstract

Estimating the Worst Case Execution Time (WCET) of a
program on a given processor is important for the schedu-
lability analysis of real-time systems. WCET analysis tech-
niques typically model the timing effects of microarchitec-
tural features in modern processors (such as the pipeline,
caches, branch prediction, etc.) to obtain safe but tight
estimates. In this paper, we model out-of-order processor
pipelines for WCET analysis. This analysis is, in general,
difficult even for a basic block (a sequence of instruc-
tions with single-entry and single-exit point) if some of the
instructions have variable latencies. This is because the
worst case execution time of a basic block on out-of-order
pipelines cannot be obtained by assuming maximum laten-
cies of the individual instructions. Our timing estimation
technique for a basic block is inspired by an existing perfor-
mance analysis technique for tasks with data dependences
and resource contentions in real-time distributed systems.
We extend our analysis by modeling the interaction among
consecutive basic blocks as well as the effect of instruc-
tion cache. Finally, we employ Integer Linear Programming
(ILP) to compute the WCET of an entire program. The ac-
curacy of our analysis is demonstrated via tight estimates
obtained for several benchmarks.

1. Introduction

Statically analyzing the Worst Case Execution Time
(WCET) of a program is important for real-time soft-
ware. Due to its inherent importance in schedulability
analysis, such timing analysis of software has been stud-
ied extensively [3, 10, 11, 18, 21, 23]. Usually the analysis
involves path analysis to find out infeasible paths in the pro-
gram’s control flow graph and microarchitectural model-
ing. Note that WCET analysis techniques are conservative,
that is, they compute an upper bound of the program’s ac-
tual worst case execution time. So, it is possible to ignore
the effects of the underlying hardware by introducing pes-
simism. However, ignoring the microarchitectural features

produces extremely loose timing bounds as modern pro-
cessors employ advanced performance enhancing features
such as the pipeline, cache, branch prediction, etc. To ob-
tain a tight (yet safe) WCET estimate, we need to model
the timing effects of microarchitectural features.

In the recent past, researchers have studied the effects
of pipeline, cache and their interaction on program execu-
tion time [11, 14, 20, 23]. These works are based on as-
sumptions that are only applicable to in-order pipelines,
where instructions are executed in program order. How-
ever, current high-performance processors employ out-of-
order execution engines to mask latencies due to pipeline
stalls; these stalls may happen due to resource contentions,
cache misses, branch mispredictions, and so on. Even in
the embedded domain, some recent processors employ out-
of-order pipeline; examples include Motorola MPC 7410,
PowerPC 440GP, AMD-K6 E and NEC VR5500 MIPS.

In this paper, we model the effects of out-of-order
pipelines on the WCET of a program. The main dif-
ficulty of modeling such processors is due to thetim-
ing anomalyproblem [15]. It shows that the overall WCET
of a program can exceed the estimate obtained by maxi-
mizing latencies of individual instructions. Consequently,
all possible schedules of instructions with variable laten-
cies need to be considered for estimating the WCET of even
a single basic block. Recently, Heckman et al. [7] mod-
eled an out-of-order processor – PowerPC 755. In order to
estimate the WCET of a basic block, they statically sim-
ulate the execution of the instructions using abstract
pipeline states. However, due to the presence of tim-
ing anomaly, a pipeline state has to be split into multiple
pipeline states if the latency of an instruction is un-
known, for example.

In this paper, we show how to obtain a safe and tight
WCET estimate for out-of-order pipeline without enu-
merating all possible instruction schedules. Our technique
is inspired by an iterative performance analysis tech-
nique for real-time distributed systems proposed by Yen
and Wolf [25], which estimates the execution time of tasks
with data dependences and resource contentions. We ex-
ploit and augment their technique for estimating the
WCET of a basic block by treating individual instruc-

tions as tasks. Clearly, there are data dependences between
instructions in a program; resource contention is de-
fined in terms of two instructions requiring the same func-
tional unit. We then extend our solution for estimating the
WCET of a basic block to arbitrary programs with com-
plex control flows. The extension involves three steps.
First, we construct a control flow graph (CFG) from an ob-
ject code file. We apply the timing estimation technique
to basic blocks. Next, we bound the timing effects of in-
structions preceding or succeeding the basic block. Finally,
Integer Linear Programming (ILP) technique is em-
ployed to estimate the WCET of the entire program. We
also extend our technique to include the effect of instruc-
tion cache.

The rest of this paper is organized as follows. Section 2
surveys related work on WCET analysis. Section 3 explains
the technical difficulties in modeling out-of-order execution
engines. The next two sections present our estimation tech-
nique: estimation for a basic block (Section 4) followed by
the WCET estimation of a complete program (Section 5).
Integrations of instruction cache and branch prediction with
our pipeline analysis are discussed in Section 6. Experimen-
tal results are presented in Section 7. Concluding remarks
appear in Section 8.

2. Related work

Research on WCET analysis was initiated more than a
decade ago. Early activities can be traced back to [18, 21].
These works analyzed the program source code and did not
consider hardware features such as cache or pipeline. Cur-
rently, there exist different approaches for combining pro-
gram path analysis with micro-architectural modeling. One
of them is a two-phased approach; it usesabstract inter-
pretation [23] to categorize the execution time of the in-
structions and then applies the Integer Linear Programming
(ILP) to incorporate path constraints. The other one is an
integrated approach proposed in the context of modeling
instruction caches [11]. It employs an ILP formulation us-
ing path constraints derived from the control flow graph as
well as constraints on cache behavior. A major concern with
the ILP-only approach is the scalability of ILP problem size
and/or solution times [24].

Pipelining is the core technique universally employed
in modern processors and has been studied extensively for
WCET analysis. Prior works in this area have success-
fully modeled in-order pipelines. Zhang et al. [26] mod-
eled a simple pipeline structure with only two stages. Lim
et al. [12] computed the WCET for RISC processors with
pipelines and caches through an extension to Shaw’s tim-
ing schema [21]. A case study with this approach for MIPS
R3000/R3010 processors was made by Hur et al. [9]. Their
work has been extended in [13] to model multiple-issue ma-

chines. Healy et al. [6] presented another approach for mod-
eling processors with both instruction cache and pipeline.
They first categorized cache behaviors of the instructions,
and then used the cache information to analyze the perfor-
mance of the pipeline. Lundqvist and Stenström [15] com-
bined instruction level simulation with path analysis by al-
lowing symbolic execution of instructions (whose operands
are unknown). Schneider and Ferdinand [20] appliedab-
stract interpretationfor modeling superscalar processors
(SUNSPARC 1). Recently WCET analysis on real modern
processors have emerged. Langenbach et. al. [7] presented
a work based on abstract interpretation on Motorola Cold-
Fire 5307 which has pipelines, caches and branch predic-
tion etc. The abstract pipeline state they used was just a set
of concrete pipeline states and they reported that the amount
of pipeline states tended to be tolerable. Heckman et. al. [7]
modeled an out-of-order processor – PowerPC 755. Their
way of handling out-of-order execution was to consider all
interleavings of instructions. Due to the increased complex-
ity, they suggested that out-of-order execution be limited.

Lundqvist and Stenström [16] observed timing anomaly
for processors without-of-orderexecution engines. On such
processors, a local worst case might not lead to the global
worst case. For example, a cache miss could result in a
shorter overall execution time than a cache hit. This ob-
servation makes micro-architectural modeling techniques
mentioned earlier inapplicable to out-of-order processors.
Lundqvist and Stenström [16] presented a program modifi-
cation approach to analyze WCET in the presence of out-of-
order execution engines. The idea is to insert “synchroniza-
tion” instructions before and after each variable latency in-
struction in the program to eliminate timing anomaly. How-
ever synchronization instructions flush the pipeline incur-
ring significant overhead. Moreover, their method requires
software controlled caches, which may not be present in all
processors. Recently, Engblom [3] conducted a comprehen-
sive study of various pipelines and presented a framework
for modeling those pipelines. Even though he studied tim-
ing anomalies, he did not propose any specific solution for
modeling out-of-order processors.

The approach for modeling out-of-order pipelines pre-
sented in this paper does not depend on special processor
features for controling micro-architectural behaviors, nei-
ther does it need to modify the program object code. Also,
this interval based technique is free of enumerating all pos-
sible interleavings of instructions, therefore it achieves high
efficiency.

3. Difficulties in modeling out-of-order execu-
tion

Modern processors employ out-of-order execution
where the instructions can be scheduled for execu-

I+1
I

ROB

I-1

headtail

I-4

I-2 I-3

I-buffer

ALU

MULTU

FPU

General
Purpose
Register
File

Floating
Point
Register
File

IF ID EX WB CM

(a) Processor model

(b) Pipeline stages

Figure 1: Our out-of-order processor pipeline model

tion in an order different from the original program or-
der. In such a processor, an instruction can execute if
its operands are ready and the corresponding functional
unit is available, irrespective of whether earlier instruc-
tions have started execution or not. The out-of-order exe-
cution improves the processor’s performance significantly
as it replaces pipeline stalls (due to dependences and/or re-
source contentions) with useful computations. However,
the out-of-order execution mechanism makes WCET anal-
ysis difficult. We first introduce an out-of-order processor
pipeline to illustrate these difficulties.

3.1. An out-of-order processor pipeline

Figure 1(a) shows an example of an out-of-order pro-
cessor pipeline, which we will use to illustrate our estima-
tion technique later in the paper. This pipeline is a simpli-
fied version of the SimpleScalarsim-outorder simula-
tor pipeline [1], which in turn is based on [22]. The pipeline
consist of five stages as shown in Figure 1(b).

1. Instruction Fetch (IF). This stage fetches instruc-
tions from the memoryin program orderinto the in-
struction fetch bufferI-buffer . Let us assume a 2-
entryI-buffer for discussion.

2. Instruction Decode & Dispatch (ID). This stage de-
codes instructions in theI-buffer and dispatches
them into a circular buffer, called the re-order buffer
ROBin program order. The ROB, a 4-entry buffer in
our example, forms the core of the pipeline. Instruc-
tions are stored in this buffer from the time they are dis-
patched to the time they are committed (seeCMstage).

3. Instruction Execute (EX). An instruction in theROB
is issued to its corresponding functional unit for execu-
tion when all its operands are ready and the functional

0 1 2 3 5 6 7 8 9 104
Instruction

A mult r3 r1 r2
B add r3 r3 8
C and r3 r3 0xff
D addu r5 r4 8
E mult r5 r5 r6

MULTU

ALU B C

A E

MULTU

ALU D

D

A

B C

E

(c) Instruction A executes 3 cycles

0 1 2 3 5 6 7 8 9 104

(a) Instruction sequence

MULTU 1 ~ 4 cycles
ALU 1 cycle

(d) Instruction A executes 4 cycles(b) Latencies

Figure 2: Example of timing anomaly due to variable la-
tency instructions

unit is available. If more than one instructions corre-
sponding to a function unit are ready for execution, the
earliest instruction is issued for execution. We assume
that the functional units are not pipelined, that is, an in-
struction can be issued to a functional unit F only af-
ter the previous instruction occupying F has completed
execution. We also assume that the number of instruc-
tions issued in a clock cycle is only bounded by the
number of functional units. TheEXstage exhibits true
out-of-orderbehavior as an instruction can start exe-
cution irrespective of whether earlier instructions have
started execution or not.

4. Write Back (WB). In this stage, instructions that have
finished execution forward their results to awaiting in-
structions, if any, in theROB. If all the operands of an
awaited instruction become ready, the instruction will
be among the candidates scheduled for execution in the
next cycle. We assume that there is no contention in the
WBstage, that is, an instruction that has finished exe-
cution can always write back its results immediately.
Clearly, instructions can write back results inout-of-
orderas well.

5. Commit (CM). This is the last stage where the oldest
instruction that has completed theWBstage writes its
output to the register file and frees itsROBentry. Note
that the instructions commitin program order. That
is, even if an instruction has completed itsWBstage,
it still has to wait for the earlier instructions to com-
mit. At most one instruction can commit each cycle.

In summary, in our processor model,EX andWBare the
two pipeline stages where instructions can proceed out-of-
order. There is resource contention only in theEX stage
where instruction may compete for functional units.

3.2. Timing anomaly

The out-of-order execution has a serious impact on
WCET analysis in the form oftiming anomaly ob-

served by Lundqvist and Stenström [16]. Let us consider
a variable latency instructionI with two possible laten-
cies lmin and lmax such thatlmax > lmin. Let us assume
that the execution time of a sequence of instructions con-
taining I is gmax (gmin) if I incurs a latency oflmax
(lmin). The latencies of the other instructions in the se-
quence are fixed. A timing anomaly happens if either
(gmax − gmin) < 0 or (gmax − gmin) > (lmax − lmin).

Figure 2 illustrates timing anomaly with an example. In
the code fragment, instructionB depends onA, instruction
C depends onB, and instructionE depends onD. Instruc-
tions A andE use theMULTUfunctional unit with latency
of 1 ∼ 4 cycles and the other instructions use the single cy-
cle ALU functional unit. We illustrate two possible execu-
tion scenarios. In the first scenario illustrated in Figure 2(c),
instructionA executes for three cycles. Therefore, instruc-
tionsB andCexecute on cycle3 and4 respectively, respec-
tively. InstructionD is ready for execution in cycle3 itself,
but it can only be scheduled for execution in cycle5 afterB
andC (which appear earlier in program order). The overall
execution time in this case is10 cycles. In the second sce-
nario as illustrated in Figure 2(d),A executes for four cy-
cles. NowD is the only ready instruction in cycle3 (B and
Care still waiting for their operands). ThereforeDexecutes
in clock cycle3 allowing E to start execution in clock cy-
cle 4. The overall execution time in this case is only eight
cycles. Thus,a longer latency ofA results in a shorter over-
all execution time.

In the presence of timing anomaly, techniques which
generally take the local worst case for WCET estimation no
longer guarantee safe bounds. For example, assuming the
longest latency for variable-latency arithmetic instructions
is not safe for WCET estimation of out-of-order proces-
sors. This prompts the need to consider all possible sched-
ules of instructions. For a piece of code withN instruc-
tions and each of which hasK possible latencies, a naive
approach which examines each possible schedule individu-
ally will take up toKN rounds of estimations. To address
this problem, Lundqvist and Stenström[16] proposed a pro-
gram modification approach to enable safe local decision
making for WCET analysis with out-of-order processors.
They insert synchronization instructions before and after
every variable-latency instruction in the code. A synchro-
nization instruction flushes the pipeline, thereby enforcing
a predictable pipeline state. However, pipeline flushes waste
many clock cycles and lead to imprecise analysis.

4. Estimating the execution time of a basic
block

Our effort in this section is to develop an algorithm for
estimating the WCET of a basic block on our out-of-order
processor pipeline. Instructions in a basic block are exe-

cuted sequentially, that is, there is no non-determinism in
terms of control flow transfer. In order to focus on pipeline
modeling, we will initially assume that there are no cache
misses or branch mispredictions. Later, we show how to in-
tegrate cache and branch prediction with our pipeline anal-
ysis.

Our approach avoids explicit enumeration of possible in-
struction schedules. It first formulates the problem in terms
of an execution graph where the edges represent the data de-
pendences as well as dependences among different pipeline
stages. Secondly, it maintains the start and completion times
of the pipeline stages corresponding to each instruction as
conservative intervals. For example, the start time of a par-
ticular pipeline stage for an instruction is estimated as[l, u],
wherel andu denote the earliest and latest possible start
times, respectively. Clearly, the WCET of an instruction
trace is then the latest possible finish time of the last instruc-
tion’s commit stage. Our algorithm starts with very loose
bounds on the intervals and iteratively tightens the bounds.

4.1. Problem formulation

Execution graphGiven a straight-line code, each node in
the execution graph represents a tuple, an instruction identi-
fier and a pipeline stage, denoted asstage(instruction iden-
tifier), e.g.IF(I) is the fetch stage of instructionI . If the
code containsN instructions and the pipeline containsP
stages, then the number of nodes in the execution graph is
N×P . Each node is associated with the latency of the corre-
sponding pipeline stage. All the pipeline stages, exceptEX,
have single cycle latency. If instructionI has variable la-
tency, thenEX(I) is annotated with[l, u], wherel andu
are lower and upper bounds on latency, respectively. Solid
edges in the graph represent dependences among the nodes.
A dependence edgeu → v from nodeu to v indicates that
nodev can start only after nodeu completes. There exists
four types of dependences.

• Dependences among pipeline stages of the same in-
struction. This is because an instruction must proceed
from the first stage to the last, for example,ID(I)
must followIF(I) .

• Dependences due to in-order execution inIF , ID , and
CMpipeline stages. Different instructions should pro-
ceed in program order through these pipeline stages,
for example,IF(I+1) can only start afterIF(I) .

• Data dependences among instructions. If instructionI
produces a result that instructionJ uses, then we have
an edge fromWB(I) to EX(J) . As we assume per-
fect branch prediction, we do not need to model con-
trol dependence edges even if the code contains branch
instructions.

1: mult r6 r10 4
2: mult r1 r10 r1
3: sub r6 r6 r2
4: mult r4 r8 r4
5: add r1 r1 r4

(a) Code example

IF(1) ID(1) EX(1) WB(1) CM(1)

IF(2) ID(2) EX(2) WB(2) CM(2)

IF(3) ID(3) EX(3) WB(3) CM(3)

IF(4) ID(4) EX(4) WB(4) CM(4)

IF(5) ID(5) EX(5) WB(5) CM(5)

(b) Execution graph of the code

Figure 3: A sequence of instructions and the corresponding
execution graph

• Dependences due to fullI-buffer or ROB. For ex-
ample, assuming that theI-buffer has two entries,
there will be no entry available forIF(I+2) before
ID(I) completes (which frees its entry from theI-
buffer). Similarly, by assuming a 4-entryROB, there
will be an edge fromCM(I) to ID(I+4) asCM(I)
frees up an entry in theROB. Note that we can draw
these edges as both theI-buffer and theROBare
allocated and freed in program order.

Dashed edges are drawn to reflect functional unit con-
tentions among instructions. Thus, if instructionI can pos-
sibly delay the execution of instructionJ by contending for
a functional unit, then a dashed edge is drawn fromEX(I)
to EX(J) . It is not necessary thatI appears beforeJ in
program order. IfI and J can delay each other, then we
will have a bi-directional dashed edge betweenEX(I) and
EX(J) . In our example pipeline, resource contention hap-
pens only in theEX stage. There cannot be any contention
between instructions with data dependences or between in-
structions that can never coexist in theROB(their distance
is greater than or equal to the capacity of theROB).

Figure 3 shows an example of execution graph. Edges
WB(1) → EX(3), WB(2) → EX(5), andWB(4) → EX(5)
reflect data dependences. The dashed edges represent con-
tention for functional units. For example, the bi-directional
dashed edge betweenEX(1) andEX(4) implies: (a) if in-
structions 1 and 4 are both ready to execute and the func-
tional unitMULTUis free, thenEX(1) will have higher pri-
ority, and (b) ifEX(4) has already started beforeEX(1)
was ready, thenEX(4) will be allowed to complete and
thereby delayEX(1) . There is no preemption ofEX(4)
by EX(1) . Note that the dashed edgeEX(1) → EX(2) is
uni-directional. This is because the source operand regis-

ters of instruction 1 are a subset of those of instruction 2.
This implies that instruction 1 will always be ready before
instruction 2. Moreover, as instruction 1 has higher prior-
ity than instruction 2 due to program order,EX(2) cannot
delayEX(1) .

Our execution graph is similar to the dynamic depen-
dence graph among instructions of Fields et al. [5]. In their
work, the dependence graph is obtained from a concrete
simulation run, i.e., a trace of dynamic instructions. There-
fore, the actual resource contentions exercised in that par-
ticular run are known and the nodes are annotated with the
execution latency as well as the wait time for a functional
unit. They study how much each instruction can be delayed
(the slack) without increasing the execution time of the run.
Our execution graph is static and all possible resource con-
tentions between instructions are represented in the execu-
tion graph for purposes of static analysis.

Problem definitionGiven a straight-line code consisting
of a sequence of instructionsI1, I2, . . . , IN and the corre-
sponding execution graph, we need to estimate its WCET,
that is, the maximum completion time of the nodeCM(IN)
assumingIF(I1) starts in time zero. Note that this problem
is not equivalent to finding the longest path fromIF(I1)
to CM(IN) in the execution graph (taking the maximum la-
tency of each pipeline stage). The execution time of a path
in the execution graph is not a simple summation of the la-
tencies of the individual nodes because of two reasons.

• The total time spent in making the transition from
ID(I) to EX(I) is dependent on the contention from
the other ready instructions.

• The initiation time of a node is computed as themaxof
the completion times of its immediate predecessors in
the execution graph. This models the effect of depen-
dences, including data dependences.

4.2. A related problem

Given the problem formulation, we use an iterative al-
gorithm to estimate the WCET of a sequence of instruc-
tions. The algorithm is safe, that is, it never produces an
under-estimation. It begins with a very coarse approxima-
tion for the start and completion times of the nodes. These
approximations are refined iteratively until (a) a fixed point
is reached, or (b) a prescribed number of iterations is ex-
ecuted. The basic structure of our algorithm is inspired by
a performance analysis technique for real-time distributed
systems [25].

For the related problem, Yen and Wolf analyze a sys-
tem consisting of several periodic tasks represented by task
graphs as in Figure 4(a). Each task consists of a partially
ordered set of processes, and process has lower and upper
bounds on its computation time. The hardware architecture

(a) Task graphs (b) Distributed system

P1P2

P4
P4P5

P5

P3

P2

P1 P3

Figure 4: The distributed system (by Yen and Wolf)

consists of a set of Processing Elements (PE) connected via
communication edges as in Figure 4(b). Processes are allo-
cated to the PEs and priorities are assigned among the pro-
cesses assigned to the same PE. A processP is scheduled
to execute on a processorE if (1) all of P ’s predecessors
have completed execution, and (2) no higher priority pro-
cess in running onE. P can possibly preempt a lower pri-
ority process to start execution; on the other hand,P may
itself get preempted by higher priority processes during its
computation. The algorithm estimates the worst case com-
pletion time of all the tasks.

The problem addressed by Yen and Wolf’s algorithm is
similar to our analysis problem in some key aspects. For
convenience, let us call their problemP and our problem
P ′, respectively. The similarities are:

• The execution graph ofP ′ is similar to the task graph
of P. InP, processes have variable execution times; In
P ′, EXstages have variable latencies.

• Edges in both graphs represent dependences among
nodes. Moreover, there are resource contentions in
both problems. InP, contending processes are as-
signed fixed priorities by the system designer whereas
in P ′, the program order determines priorities of in-
structions.

The similarities between the two problems render the
framework of the algorithm inP, which iteratively refines
timing bounds of processes, applicable toP ′. However,
there are some significant differences as well.

• In P, tasks are periodic while the execution graph in
P ′ is non-periodic.

• In P, a higher priority processhp may delay a lower
priority processlp by preemption; butlp cannot delay
hp. However, inP ′, it is possible for a lower priority
instruction (appearing later in program order)li to de-
lay the execution of a higher priority instructionhi as
there is no preemption. Ifli is executing whenhi be-
comes ready, thenli is allowed to complete the execu-
tion and it delays the execution ofhi.

These differences make the computation of the response
time of a nodev – the time when all ofv’s predecessors
have completed execution to the timev completes execu-
tion – different for the two problems.

4.3. Our approach

As discussed in Section 4.1, our problem is not equiva-
lent to finding the longest path in the execution graph due
to resource contentions and dependences. Dependences are
taken care of by using a modified longest path algorithm
that traverses the nodes in topologically sorted order. This
topological traversal ensures that when a node is visited,
the completion times of all its predecessors are known. To
model the effect of resource contentions, we conservatively
estimate an upper bound on the delay due to contentions for
a functional unit by other instructions. A single pass of the
modified longest path algorithm computes loose bounds on
the lifetime of each node. These bounds are used to iden-
tify nodes with disjoint lifetimes. These nodes are not al-
lowed to contend in the next pass of the longest path search
to get tighter bounds. These two steps repeat till either there
is no change in the bounds or a pre-defined number of iter-
ations have elapsed.

Notations Before we discuss the algorithm, we explain the
notations used.

• treadyi : Ready time of nodei is defined as the time
when all its predecessors have completed execution.

• tstarti : Start time of node ai is defined as the time when
it starts execution. For all the nodes exceptEX(I) ,
tstarti = treadyi . EX(I) may not be able to start execu-
tion when it becomes ready if another instruction is us-
ing the corresponding functional unit, or some higher
priority instructions (earlier thanI in program order)
are also ready. In general,tstarti ≥ treadyi .

• tfinishi : Finish time of a nodei s defined as the time
when it completes execution. Pipeline stages other
than EX need only one cycle to execute. Therefore,
tfinishi = tstarti + 1. For EX stage, we add the min-
imum (maximum) latency of the functional unit to
tstarti when we compute itsearliest(latest) finish time.

• separated(i, j): If the executions of the two nodesi
andj cannot overlap, thenseparated(i, j) is assigned
to true; otherwise, they might overlap and it is assigned
to false.

• early contenders(EX(I)): This is the set ofEX
nodes s.t.EX(J) ∈ early contenders(EX(I)) if
J appears beforeI in program order and there is
a dashed edge denoting resource contention from
EX(J) to EX(I) in the execution graph.

• late contenders(EX(I)): This is the set ofEXnodes
s.t. EX(J) ∈ late contenders(EX(I)) if J appears
afterI in program order and there is a dashed edge de-
noting resource contention fromEX(J) to EX(I) in
the execution graph.

1 maxsep[., .] =∞; step = 0;
2 foreach nodei in G do
3 earliest[tstarti] := 0; latest[tfinishi] :=∞; latest[tstarti] :=∞; earliest[tfinishi] := MIN LATENCYi;

4 repeat
5 LatestTimes(G) ; EarliestTimes(G) ;
6 foreach i in G in topological orderdo
7 MaxSeparations(i) ;

8 step := step+ 1 ;

until maxsep[., .] is unchanged orstep > limit;

9 WCET = latest[tfinish
sink

]; /* sink is node in G representing commit of last instruction */

Figure 5: WCET Estimation of Execution GraphG

1 latest[treadysrc] := 0; /* src is the root node ofG */
2 foreachnodei in G in topologically sorted orderdo
3 latest[tstarti] := latest[treadyi];

4 Slate := late contenders(i)
⋂
{j | ¬separated(i, j)

∧
earliest[tstartj] < latest[treadyi]};

5 if Slate 6= φ then
6 latest[tstarti] := min

(
maxj∈Slate

(
latest[tfinishj]

)
, latest[treadyi] +MAX LATENCYi − 1

)
;

7 Searly := early contenders(i)
⋂
{j | ¬separated(i, j)} ;

8 if Searly 6= φ then

9 tmp := min
(
maxj∈Searly

(
latest[tfinishj]

)
, latest[tstarti] +

∣∣Searly∣∣×MAX LATENCYi
)

;

10 latest[tstarti] := max
(
tmp, latest[tstarti]

)
;

11 latest[tfinishi] := latest[tstarti] +MAX LATENCYi ;
12 foreach immediate successork of i do
13 latest[tready

k
] = max(latest[tready

k
], latest[tfinishi]);

Figure 6: LatestTimes(G)

WCET computationFigure 5 presents the algorithm for
computing the WCET given an execution graph. The top
level framework presented in Figure 5 is similar to [25].
However, as mentioned in Section 4.2, computation of lat-
est times and earliest times (Figure 6 and 7) are different in
our case. The top level algorithm iteratively performs two
tasks: timing bounds computation and separations analy-
sis. The first task is done byLatestTimesandEarliestTimes,
which compute the upper and lower timing bounds of the
nodes. The second task is done byMaxSeparations, which
identifies pairs of nodes whose lifetimes are separated. The
tighter the bounds obtained in the first task, the more is the
number of pairs of nodes that can be identified as separated.
On the other hand, the more the number of separated pairs
identified by the second task, the tighter are the timing in-
tervals computed by the first task in subsequent iterations
due to lesser number of competing nodes.

Figure 6 computes the latest ready, start, and finish times
for each node of the execution graph. The latest start time
of node i, denoted aslatest[tstarti], is computed accord-
ing to (a) its latest ready timelatest[treadyi] (which is
obtained from the latest finish times of its predecessors),
and (b) its contenders. We first consider the delay ofi’s
start time by contenders later in program order, denoted
as late contenders(i). Obviously, a late contenderj can-
not start delayingi after i is ready becausei has higher
priority. Therefore late contenders who do not satisfy the

condition earliest[tstartj] < latest[treadyi] are excluded.
We also exclude the contenders who have been identi-
fied by MaxSeparationsto be separated fromi. The de-
lay from a late contenderj is bounded byj’s latest fin-
ish time latest[tfinishj]. In addition, j cannot delayi by
more than its maximum latency; thus, we have another
bound latest[treadyi] + MAX LATENCYi − 1 where
MAX LATENCYi = MAX LATENCYj is the max-
imum latency of the contended functional unit. The mini-
mum of the two bounds is taken. Note that the start of node
i can be delayed by at most one late contender.

Apart from the delay due to late contenders ofi, we also
need to estimate the delay ini’s start time due to its early
contenders. Note that the early contenders appear beforei
in program order. So in the worst case, all of them, except
those proved to be separated fromi by theMaxSeparations
algorithm, can contend withi and delay its start time. This
is captured in lines 7–10 of Figure 6. The latest finish time
of i is obtained by simply adding the maximum latency of
the functional unit tolatest[tstarti] (line 11). This is because
an instruction cannot get preempted once it has started ex-
ecution on a functional unit. The immediate successors ofi
get their latest ready times updated ifi’s latest finish time is
higher than the current approximation of their latest ready
times (see line 12–13 of Figure 6).

Similarly, Figure 7 computes the earliest ready, start, and
finish times of all nodes in the execution graph. The main

1 earliest[treadysrc] := 0; /* src is the root node ofG */
2 foreachnodei in G in topologically sorted orderdo
3 earliest[tstarti] := earliest[treadyi];

4 Slate := late contenders(i)
⋂
{j | ¬separated(i, j)

∧
latest[tstartj] < earliest[treadyi] < earliest[tfinishj]};

5 Searly := early contenders(i)
⋂
{j | ¬separated(i, j)

∧
latest[tstartj] ≤ earliest[treadyi] < earliest[tfinishj]};

6 S := Slate
⋃
Searly ;

7 if S 6= φ then
8 earliest[tstarti] := max

(
maxj∈S

(
earliest[tfinishj]

)
, earliest[treadyi]

)
;

9 earliest[tfinishi] := earliest[tstarti] +MIN LATENCYi ;
10 foreach immediate successork of i do
11 earliest[tready

k
] = max(earliest[tready

k
], earliest[tfinishi]);

Figure 7: EarliestTimes(G)

difference is that we allow a nodej to contend and thereby
delay the earliest start time of a nodei only if the contention
can be guaranteed.

Separation analysis identifies separated pairs
of nodes. Given a pair of nodesi and j, if
earliest[treadyi] ≥ latest[tfinishj], i can never be ready be-
fore j completes execution; therefore,i andj cannot over-
lap. The algorithmMaxSeparationsgiven by Yen and
Wolf [25], which is a modification of [17], can identify
more cases of separated nodes than the obvious ones sat-
isfying the above constraint. In our problem, given two
nodesi and j in the execution graph, we have simply set
separated(i, j) to true ifearliest[treadyi] ≥ latest[tfinishj]
or earliest[treadyj] ≥ latest[tfinishi]. This simplified def-
inition of separated nodes substantially increases the effi-
ciency of our analysis; in the experiments we found that
the resultant loss of precision is negliglible in our prob-
lem.

5. Estimating WCET of a complete program

In this section, we discuss how the WCET of a com-
plete program is computed based on our technique for basic
blocks. Firstly, extentions to the technique are made by tak-
ing into account contexts before and after a basic block, as
previous algorithms are based on assumptions that there are
no instructions outside the basic block interacting with it
and the pipeline is clean at the begining of a basic block.
Secondly, after WCETs of basic blocks in the program are
obtained, the integer linear programing technique is used
to formulate the WCET of the overall program as an ob-
jective function to be maximized under constraints derived
from the control flow graph. Extra constraints might be pro-
vided by the user to further exclude infeasible paths. Fi-
nally, the ILP solver will be used to search the worst case
path and produce the WCET of the program.

IF(1) ID(1) EX(1) WB(1) CM(1)

IF(2) ID(2) EX(2) WB(2) CM(2)

IF(3) ID(3) EX(3) WB(3) CM(3)

IF(4) ID(4) EX(4) WB(4) CM(4)

IF(5) ID(5) EX(5) WB(5) CM(5)

IF(6) ID(6) EX(6) WB(6) CM(6)

IF(7) ID(7) EX(7) WB(7) CM(7)

pr
ol

og
ue

body

(d) Execution Graph of the Code

Figure 8: Conservative estimation of upper bounds of the
prologue

5.1. Modeling impact from contexts

The execution context of a basic blockB is defined in
terms of instructions which are immediately preceding or
succeedingB. Their effects toB are two folds: (1) pipeline
stalls due to data dependences (only instructions preceding
B can stallB in this regard); (2) pipeline stalls due to re-
source contentions. A problem is: how many context in-
structions need to be considered? Assuming a2-entry in-
struction buffer and a4-entry re-order buffer, at most5 in-
structions remain in the pipeline whenB enters the pipeline.
Similarly due to the4-entry reorder buffer, at most3 in-
structions afterB can contend with instructions inB (no
data dependences fromB on them, so only consider con-
tentions). We will only consider these instructions which
might affectB directly as contexts. Conservative assump-
tions are made in case of any uncertainties. For ease of dis-
cussion, we call context instructions before (after) a basic
blockB prologue(epilogue) of B. Now an execution graph
consisting of three parts is constructed: the prologue, the ba-
sic block and the epilogue. The basic block in the middle is
called thebody.

Prologue To consider the effect from the prologue to the
execution of the body, we first need to derive the timing

intervals of the prologue instructions, such that their im-
pact on other instructions can be evaluated. As the execu-
tion context of the prologue itself is not clear, the process of
deriving their intervals is conducted in the following way.

The latest times of the prologue nodes are computed ac-
cording to several rules applied to the execution graph. The
first rule says that a nodex’s latest finish time is bounded
by its successory’s latest ready time because only afterx
has finished cany be ready. Therefore ify’s latest ready
time is known, it can be used asx’s latest finish time. In
case more than one successor’s latest ready time is known,
take the smallest one asy’s latest finish time. The sec-
ond rule says that a nodex’s latest start and ready times
are bounded by its latest finish time. Therefore ifx’s lat-
est finish time is known, its latest start time can be com-
puted as:tstartx = tfinishx − MIN LATENCYx, where
MIN LATENCYx is the minimum latency ofx. Forx’s
ready time, as it cannot be later than its start time, it is safe
to usex’s latest start time as its latest ready time. Combin-
ing the two rules, latest times on any node in the prologue
which has a path to the first nodeIF (7) (whose ready time
is assumed to be0) of the body in Figure 8 can be obtained.
Those nodes are shaded in Figure 8. The third rule sets the
x’s latest ready time with the maximum finish time of its
predecessors. It will be used in combination with the lat-
est time algorithm to compute the upper bounds for the rest
nodes whose timing bounds cannot be simply derived from
rule 1 and rule 2.

This process starts fromEX(2). It may have data de-
pendences or resource contentions with earlier instructions
which are not drawn in Figure 8. However, all the ear-
lier instructions must have finished their executions at the
ready time ofCM(1). Therefore, we take the maximum
of CM(1)’s latest ready andID(2)’s latest finish time as
EX(2)’s latest ready time. Its latest start and finish times
are computed by algorithm in Figure 4.3. Note at this mo-
ment, timing intervals of late contenders are unkown, there-
fore we let the late contentions be as much as possible
(but they are still constrained by latencies of functional
units). AfterEX(2)’s latest times are computed,WB(2)
andCM(2) can be processed with rule 3. After that, other
prologue instructions can be processed similarly as instruc-
tion 2. It proceeds in instruction order until all prologue
nodes are processed.

For earliest times, as they have less significance on af-
fecting the worst case execution time. We assume safe ear-
liest times,−∞, for prologue nodes.

Epilogue To compute timing intervals of epilogue instruc-
tions, contentions from their late contenders (which are un-
known) have to be maximized for latest times, therefore line
6 in Figure 4.3 becomeslatest[tstarti] = latest[treadyi] +
MAX LANTENCYi − 1. If i is a single-cycle instruc-
tion, then there is no pessimism introduced. Otherwise its

A

B

C

tA tB tC

Figure 9: Overlaped execution

lastest start time could be overestimated for a few cycles. A
longer epilogue, where instuctions directly contending with
body instructions are followed by more instructions, could
reduce overesitmation as their late contenders become avail-
able now. In practice, we make the epilogue size being twice
the size of the reorder buffer. The computations of the ear-
liest times of the epilogue instructions are the same as that
of the body instructions.

With timing intervals of prologue and epilogue nodes ini-
tialzed, body nodes can be processed similarly as in Section
4.3.

Overlap We note that the execution time of two consec-
utive basic blocks is not equal to the sum of their execu-
tion times in a pipelined processor due to overlapped execu-
tion, as shown in Figure 9. It is obvious that the overlapped
part should be considered only once. Therefore the execu-
tion time of a basic block is redefined as the interval be-
tween the commit of the last instruction preceding it to the
commit of the last instruction of its own (i.e., blockB in fig-
ure 9). The only exception is the first basic block (i.e., block
A in Figure 9) in the program, for which we use the old def-
inition; this is because that block’s execution time is not
counted as part of any other block’s execution time. To con-
servatively estimate the redefined execution timetB of a
basic blockB (now the old definition is refered ast′B), we
need to estimate the minimum overlap, denoted asδ, be-
tweenA andB and deduct it fromt′B . By the new defini-
tion, the overlap is the interval between the last commit of
A to the first fetch ofB. A simple method is used to esti-
mateδ as below.

For convenience, let us give indices to instructions in
the two consecutive blocksA andB. The first instruction
of B is 0; other instructions are indexed by their distances
to this instruction, e.g., the last two instructions inA have
indices−1 and−2 respectively. Nowδ is the least possi-
ble time elapsed fromIF (0) to CM(−1). , This can be
done by checking the paths fromIF (0)’s two predeces-
sors,IF (−1) and ID(−2), to CM(−1). The time taken
from the finish ofIF (−1) to the finish ofCM(−1) can-
not be less than the length of the longest path connecting
them (here a path’s length is the sum of minimum latencies
of nodes on the path). Let the length bel1, and the length of
the longest path fromID(−2) toCM(−1) is l2. Thenδ is
the minimum ofl1 andl2.

So far we have presented a method for taking into ac-
count the impact of execution context and a method for de-
ducting minimum overlap. Although the methods are safe,
they may not produce tight results. Let us discuss the prob-
lem with a larger reorder buffer (8 entries) and a larger in-
struction fetch buffer (4 entries), which are the ones used
in our experimentation. In this case, we have a larger pro-
logue with 12 entries.IF (0) (the first node in the body)
has a predecessorID(−4) (in the prologue);ID(−4) in
turn has a predecessorCM(−12). With above method, the
latest finish times ofID(−4) andCM(−12) are 0 and
−1 respectively. However, given the long distance between
CM(−12) and IF (0), CM(−12) normally finishes long
beforeIF (0) is ready. For example, the interval could be7
cycles if instrutions go through the pipeline smoothly. Such
a pessimistic value ofCM(−12) will makeCM(0)’s lat-
est finish time be at cycle11 or later, which means it takes
11 cycles to go through a five-stage pipeline (fromIF (0) to
CM(0)). Although this is possible, but it rarely happens in
reality.

To get tight estimation, We present an alternative way
for dealing with the context. This method assumes time0
at the completion ofCM(−1) instead of atIF (0). This
way, latest times of all nodes in the prologue can be de-
rived by a simple backward traversal fromCM(0). For ex-
ample, the latest finish time ofCM(−12) computed is−11.
Now IF (0) is no longer ready at0. Its latest ready time will
be available after its predecessors (IF (−1) andID(−4))
have been traversed. By assuming minimum latencies of all
instructions being1 cycle, IF (0)’s latest ready time is at
−4, and the interval bewteenCM(−12) andIF (0) is 7 cy-
cles – much better than the1 cycle interval obtained from
the earlier method! One may ask: Why not abandon the ear-
lier method and just use this one? This is because we can-
not derive lower bounds for any nodes, either in the pro-
logue or in the body, with this method. The lack of mean-
ingful lower bounds prevents us from getting tight execu-
tion time with our algorithm – no pair of contenders will be
identified asseparated. Therefore we use the earlier method
to identify impossible contentions, which will be explored
by an extra pass using this method. The extra pass will pro-
duce an improved estimation. Note he extra pass has im-
plicitly considered the overlap since we assume the finish
of CM(−1) be time0. Therefore no need to derive a mini-
mum overlap.

5.2. Using ILP to model control flow

After the WCETs of basic blocks are estimated, the
WCET of the overall program can be conveniently com-
puted by using the integer linear programing technique. The
WCET is formulated as an objective function to be maxi-
mized:

Tprog =
N∑
i=1

ti ∗ ni

whereti is the estimated WCET of basic blocki andni
is a variable denoting the execution counts of basic block
i. The objective function is maximized subjected to a set of
constraints formulated from the control flow graph. Extra
constraints are provided by the user to further exclude in-
feasible paths therefore improve the quality of the produced
results. Note loop bounds and recursion depths of proce-
dures which have not been derived automatically must be
provided by the user.

Another option is using program paths instead of basic
blocks as analysis units. A program path typically spans
several basic blocks. The advantage of using program paths
is that the overestimation introduced by execution contexts
is dilated. In our work, paths are formed with following con-
straints.

1. A path always starts/ends at boundaries of ba-
sic blocks.

2. A path stops at a loop back, procedure call or return.

3. A path spans no more than 8 basic blocks.

4. A path has16 or more instructions, unless limited by
above two constraints.

After program paths are formed, apath flow graph(PFG)
is constructed, with nodes being program paths and edges
between paths. An edge from pathP1 to P2 indicates an
edge fromP1’s last basic block toP2’s first basic block
in the orginal CFG. When ILP problem is formulated, flow
constraints will be based on paths instead of basic blocks.
For user constraints which are given in terms of basic
blocks, they will to be translated into constraints in terms
of paths. This can be done by replacing a basic block vari-
able with paths spanning it. PFGs are usually more complex
that CFGs due to several reasons. Firstly, nodes in PFGs
are more strongly connected. Secondly, it takes more time
to analyze a unit with a longer sequence of instructions.
Lastly, the transformed user constraints are more complex
thus will take the ILP solver more time. We will evaluate
the increased complexity in Section 7.

6. Integrate modelings of other microarchi-
tectures

Microarchitectures, like branch prediction, instruction
cache and pipeline, affect the instruction timing dynamicly.
Modeling them together has been proved to be more diffi-
cult than modeling them in isolation, mainly due to their in-
teractions.

In this section, we discuss how modelings of other mi-
croarchitectures can be integrated with our pipeline analy-
sis. We select two microarchitectures: instruction cache and
branch prediction, which widely employed in modern pro-
cessors, for discussion.

6.1. Instruction cache

Instruction cache is employed to bridge the gap between
a faster processor and a slower memory system. Our method
of integrating cache modeling with pipeline analysis is a
separated approach: instruction cache modeling is followed
by pipeline modeling. For instruction cache modeling, we
adopt the method proposed by Ferdinand and Wilhelm [4],
in which instructions are categorized into four classes:al-
ways hit, always miss persistent(A piece of code is persis-
tent if it is guaranteed to stay in the instruction cache once
it is loaded.) andnot classified. The cache categorizations
will be incorporated into the pipeline analysis in a way as
described next.

In pure pipeline modeling,IF(i) always finishes in
one cycle. By assuming a cache miss takingN cycles, an
IF(i) classified asalways misstakesN cycles; annot
classifiedIF(i) takes either one cycle orN cycles, in this
case, we can safely say it happens in an interval[1, N]; an
IF(i) classified asalways hittakes one cycle; finally for
anIF(i) classified aspersistent, its first execution is anal-
ized with anN cycle execution time and its other excutions
are analized with an1 cycle execution. Now consider the al-
gorithm for computing latest times in Figure 4.3 for a node
IF(i) . As there is no contention in the instruction fetch
stage, there is nothing to do from line 4 to line 10. On line
11 MAX LATENCYi is nowN instead of1 in previ-
ous pure pipeline modeling whenIF(i) is either anal-
ways missor not classified. It can be seen that essentially
there is no change the algorithm for latest times, similarly
for the algorithm for earliest times.

6.2. Branch prediction

Branch predictions are widely employed in modern pro-
cessors for reducing pipeline stalls due to control hazards
[8]. In this part, we discuss the integration of branch pre-
diction modeling with out-of-order pipeline modeling. We
assume there is a technique that can categorize each con-
ditional branch as: (a)always correct, (b) always mispre-
dicted, and (c)unclear.

Let us now consider the example given in Figure 10(a).
There is a branch instructionb. Instructions down tob are
called partA; b’s succeeding instructions are calledB. For
simplicity, we only show one more instructionI1 in A and
one instructionI2 in B. Obviously, ifb is categorized asal-
ways correctly predicted, then no changes are needed. Ifb

IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

IF(b) ID(b) EX(b) WB(b) CM(b)

(a) Original execution graph

IF(I2) ID(I2) EX(I2) WB(I2) CM(I2)

A

B

IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

IF(b) ID(b) EX(b) WB(b) CM(b)

(b) Modifications due to branch misprediction

IF(I2) ID(I2) EX(I2) WB(I2) CM(I2)

IF(I3) ID(I3) EX(I3) WB(I3)

A

C

B

Figure 10: Changes of execution graph with branch predic-
tion

is categorized asalways mispredicted, instructions on the
wrong path will be partially executed and they affect other
instructions. We make following changes to capture their ef-
fect. First, we insert the instructions on the wrong path. The
number of such instructions are bounded by the size of re-
order buffer. In Figure 10(b) they are labeledC and we only
show one instruction,I3. SinceI3 cannot commit, its com-
mit node is removed. Next we construct edges. Edges con-
necting instructions inA and those inC are constructed as
usual, e.g., an edgeEX(I1) ↔ EX(I3) is drawn if we as-
sumeI1 andI3 are contenders. Edges connecting instruc-
tions inA and those inB are not affected by the insertion
of C, e.g.,ID(I1) → IF (I2). There are no edges between
C andB because their lifetime do not overlap, e.g., even if
I3 andI2 use the same functional unit and no data depen-
dence, they cannot contend with each other. Additionaly, an
edgeWB(b) → IF (I2) is drawn to reflect the fact that in-
structions will be fetched upon the resolving of the branch
outcome. Finally, since instructions inC are flushed when
b is resolved, their contentions to instructions inA cannot
be beyond the finish time ofWB(b). We can use this fact to
further tighten the estimation. This can be done by changing
latest[tfinishj] intomin(latest[tfinishj , latest[tfinishWB(b)]) on
Line 6 in the algorithm in Figure 6 in casej is an instruc-
tion fromC.

If b is categorized asunclear, safe estimation of WCET
bound requires that both the correct and incorrect predic-
tion of b are considered. For this purpose, we make fol-
lowing modifications to Figure 10(b). All contention edges
involving a node fromC are now defined asconditional
edges, i.e.,EX(I1) → EX(I3). These conditional edges
are only considered for estimating latest times and are ig-
nored for estimating earliest times for nodes inA. The extra
edgeWB(b) → IF (I2) is also a conditional edge, which

is only considered for estimating latest times for nodes in
B. The intuition behind this approach is that both possibil-
ities of the prediction ofb are taken into account therefore
safe upper bounds and lower bounds are guaranteed.

6.3. Branch prediction + Instruction cache

We have discussed how instruction cache and branch
prediction can be integrated individually with pipeline anal-
ysis. They serve as the basis for the task in this part – inte-
grate the three parts together. On the other hand, our experi-
ence of working on them gives us such observation, which
we think should be a general guideline for modeling mi-
croarchitectures for WCET analysis.

Our observation is: Since effects of other microarchite-
cures will eventually be reflected by the pipeline behavior
(An instruction cache miss stalls pipeline fetch for some cy-
cles, a branch misprediction results in pipeline flush, etc.
This is natural becauase the pipeline is where input data is
fed in, processed and output data is produced. Other mi-
croarchitectures are employed just to make the pipeline run-
ning as smoothly as possible), pipeline analysis should be
the core of a timing analysis framework. How a pipeline
analysis depends on analyses of other components is cru-
tial for the entire framework. For example, if a pipeline
analysis technique is more capable of proceeding on with
less clear behaviors of other microarchitectures (cache hit
, cache miss, or both possible?) than another technique
which asks for deterministic information (cache hit or cache
miss?), meanwhile it does not sacrifice much accuracy, then
it is more applicable to processors with complex architec-
tures.

Fortunately, our interval based pipeline analysis is not
very demanding on information of other microarchitectures.
For example, for an instructioniwhich might be hit or miss,
we only need to adjust the latency of nodeIF (i) to an in-
terval between1 and the cache miss penalty. For a branch
instructionbwhich might be correctely predicted or mispre-
dicted, a slight modification to the execution graph is suffi-
cient, as shown in Section 6.2.

Now we present a framework to integrate branch predic-
tion, instruction cache and out-of-order pipline together for
WCET analysis. We make following assumptions: (1) No
support for Multi-level branch predictions, that is, a branch
prediction is not allowed inside a pending branch and the
processor stalls subsequent instructions. (2) The branch pre-
dictor is only updated by the outcome of a branch, and no
other components can update it in any other situation. (3)
Instructions on predicted path are fetched from memory if
they are missed from the instruction cache. However, the
processor stops a pending fetch of a mispredicted instruc-
tion immediately at the resolving of the branch outcome. In

such cases, the cache state is not changed by that instruc-
tion.

With the second assumption, instruction cache and
pipeline cannot change the predicted direction of a branch,
although they might change the duration of a branch pre-
diction. But our technique does not depend on such details.
Therefore we can first categorize branches and modify exe-
cution graphs similarly as in Section 6.2.

We also need to know cache behaviors of instructions for
estimating execution times of basic blocks. Originaly, this
was done by traversing the CFG iteratively. At each basic
block, its cache state is updated and populated to its succes-
sors. The traversal will eventualy stop when no more change
is made to the old cache state of any basic block.

Note in our problem, the cache state at a basic blockB
is no longer updated merely by instructions inB – those
on the mispredicted (or possibly mispredicted) path should
also be considered. The question is: how many such instruc-
tions should be considered and how many of them will def-
initely/possibly/never be brought into the instruction cache
by a misprediction? As it depends on the pipeline behav-
ior, it should be studied together with pipeline analysis. This
can be done by pluging in some extra code into algorithms
in Figure 4.3 and 4.3 for this purpose. The added code is
given in Figure 11.

/* This part is added between line 4 and 5 in Figure 4.3 */
1 tmp state← cache state[bb];

/* This part is added between line 11 and 12 in Figure 4.3 */
2 if i is an instruction fetch nodethen
3 if i is in normal executionthen
4 FullUpdate(tmp state, i) ;

5 else
/* i is in misprediction of branchb */

6 if alwaysmispredicted(b) and latest[tfinishi] ≤
earliest[tfinish

WB(b)
] then

7 FullUpdate(tmp state, i) ;

8 else ifearliest[tfinishi] ≤ latest[tfinish
WB(b)

] then
9 PartialUpdate(tmp state, i) ;

10 else
11 /* no update totmp state */

/* This part is added after line 9 in Figure 4.3 */

12 /* Update cache states of succeeding basic blocks with tmpstate; */

Figure 11: Modifictions to Figure 4.3 and Figure 4.3 for in-
struction cache categorization

In Figure 11, we first copy the cache state at the entry of
the basic block under analysis into a temporary cache state
(line 1). All updatings to the cache state are performed on
the temporary cache state and it will be used to update cache
states of succeeding basic blocks. Note the cache state re-
members age inforamtion of instructions in terms of inter-

vals [youngest, oldest]. The age of an instructioni repre-
sents the number of newerconflicting instructions (in the
same cache set ofi but with different tags) in the cache. The
valuesyoungest/oldest represent the least/most possible
number of such conflicting instructions. Therefore the in-
terval covers all possible situations. Line 6 to 11 update the
cache state if nodei is an instruction fetch. A normal fetch
always updates the cache state. But the updating by a fetch
in a misprediction depends on its timing as well as the tim-
ing of the mispredicted branchb’. If i always finishes before
b’s outcome is resolved, andb is always mispredicted, then
i definitelyupdates the cache state (line 6 and 7). The pro-
cedureFullUpdate(tmp state, i) on line 7 updates both
youngest and oldest ages of instructions in the same set of
i (the article [4] gives details on how ages of instructions
are updated). Ifi can never finish beforeb’s outcome is re-
solved, theni has no chance to update the cache state (line
10 and 11). In other situations, the updating could possibly
happen, and the procedurePartialUpdate(tmp state, i)
only updates oldest ages of eligible conflicting instructions
(to reflect the cache state in case the updating is true), but
does not update their youngest ages (to reflect the cache
state in case the updating is false). For the updating ofi it-
self, only itsyoungest age is updated to be0, which means
i could be the most recent instruction in the cache if the up-
dating is true. Lastly, when the estimation in Figure 4.3 ter-
minates, the temporary cache state is used to update cache
states of succeeding basic blocks (line 11).

Now we have presented the algorithm for updating cache
state at a basic block. The next problem is to estimate exe-
cution times of basic blocks. Recall in pure pipeline mod-
eling, a basic block’s exection time is esimated only once.
Here it is not feasible because a stable cache state at a ba-
sic block takes multiple passes of traversing basic blocks in
the CFG. Each time a basic block is reached, the algorithm
(in Figure 4.3, 4.3, 7 with changes in Figure 12) is invoked.
Before the final pass the block is reached, the cache infor-
mation at its entry is coarse, and the estimated time will not
be accurate. The algorithm for obtaining an accurate esti-
mation is shown in Figure 12. performed.

1 Initialize empty cache states at each basic block;
2 worklist← root; /* root is the start block of CFG */
3 repeat
4 bb← worklist;
5 Visit(bb) ;
6 foreachsuccessorbb′ of bb do
7 if bb′’s cache state is changed bybb then
8 worklist← bb′;

until worklist is empty;
foreachbasic blockbb ∈ CFG do

9 Estimate(bb) ;

Figure 12: Estimating execution times of basic blocks

In Figure 12, the CFG is travesed iteratively. Each time

Program Description Size
matsum Summation of two 100x100 matrices 192
fdct Fast Discrete Cosine Transform 5744
fft 1024-point Fast Fourier Transformation 2472
whet whetstone benchmark 2496
fir FIR filter with Gaussian function 3848
ludcmp LU decomposition algorithm 5152
minver Inversion of a floating point matrix 6664

Table 1. The benchmark programs

a basic blockbb is visited, the procedureV isit is invoked
to estimate its execution time and to update the cache state.
Its successors will be put into theworklist if bb introduced
changes to their cache states. The iterative process will ter-
iminate when the worklist is empty, which means all cache
states of all basic blocks have been stablized. The rest work
is easy. We estimate execution times of basic blocks with
the stable cache information, then use them to formulate the
ILP problem. Finally the WCET of the whole program will
be estimated by an ILP solver.

6.4. Conlcusion

Based on the disussions in Section 6.2 and 6.3, we be-
lieve integrating our pipeline analysis engine with other mi-
croachitectures is promising. However, it only provides a
framework. WCET analysis on a processor also depends on
whether we have a solution for modeling its other microa-
chitectures. For example, we need a good quality technique
for branch prediction modeling in Section 6.3. This is part
of our future work.

7. Experimental evaluation

In this section, we evaluate the accuracy of our estima-
tion technique for seven benchmarks listed in Table 1. These
benchmarks have been widely used for WCET analysis. The
first four benchmarks have been used by Li et al. [11] for
WCET analysis and the other three benchmarks are from the
real-time research group at Seoul National University [19].
Among themmatsum has no variable-latency instructions,
fdct has a few and the rest of the benchmarks have many
variable-latency instructions.

7.1. Methodology

We have integrated instruction cache modeling with
pipeline analysis, but our implement has not include branch
prediction because so far we have not developed a tech-
nique that categorizes branches in good precision. There-
fore we assume perfect branch prediction. We also assume
load instructions always complete in a single cycle be-
cause data cache has not been modeled by us so far. Note

that even with these simplications, a program whose execu-
tion path is independent of data inputs may still have many
possible execution times due to variable lateny instruc-
tions. Since a program usually has a huge set of data inputs,
an exhaustive simulation is infeasible. What we do is to se-
lect several data inputs, which are likely to produce longer
execution times than the rest data inputs, for simula-
tion. Therefore the actual WCET is unknown and the
observed WCET is an underestimation to it.

We use the SimpleScalar architectural simulation
toolset [1] for our experiments. The SimpleScalar instruc-
tion set architecture (ISA) is a superset of MIPS ISA. We
use the compiler provided by SimpleScalar toolset to gener-
ate executables corresponding to the benchmark programs.
We wrote a prototype estimation tool that accepts the Sim-
pleScalar executable annotated with user-provided con-
straints such as loop bounds. It is parameterized with re-
spect to the cache configurations, the latencies of the
functional units as well as the number of entries in the
I-buffer and the ROB. The estimation tool first disassem-
bles the code, identifies the basic blocks, and constructs the
the control flow graph (CFG) of the program. It then per-
forms instruction cache analysis and feeds the cache infor-
mation to the pipeline analysis, which produces WCETs
for basic blocks. Finally, the tool generates ILP con-
straints and the objective function for the program’s
WCET. The ILP problem is solved by CPLEX [2], a com-
mercial ILP solver.

Our processor model has a 4-entry I-buffer and an 8-
entry ROB. It contains the following variable latency func-
tional unit types: (a) an integer multiplication unit with
1 ∼ 4 cycle latency, (b) a floating point add unit with1 ∼ 2
cycle latency, and (c) a floating point multiplication unit
with 1 ∼ 12 cycle latency. In addition, the processor has
an integer ALU unit and a load/store unit, each with one cy-
cle latency. The instruction cache has a size of 4k bytes and
its configuration is: 32 sets, 4-way associativity, 32 bytes
per cache line, 1 cycle for a hit and 10 cycles for a miss. The
replacement policy employed is LRU. We run all the exper-
iments on a1.3 GHz Pentium IV machine with1 GB mem-
ory. The estimation tool takes less than1 second for every
benchmark. This includes the time taken by CPLEX solver,
which is upto0.1 second.

7.2. Results

We first justify the need to model out-of-order execution.
A question that may arise is why not use in-order processors
to avoid the complexity of WCET analysis. In particular,
our modeling is not useful if the inaccuracy in estimation of
out-of-order pipeline outweights the performance improve-
ment it offers. In Figure 13, We compare the increase of
WCETs observed on an in-order pipeline over WCETs ob-

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

matsum fdct fft whetstone fir ludcmp minver

in-order/out-order (obs.)
est./obs.(out-order)

Figure 13: Comparison between increase of in-order/out-of-
order observed WCETs and overestimation on out-of-order
pipeline

Program Obs. WCET Est. WCET Ratio
matsum 100813 111111 1.10
fdct 9131 10503 1.15
fft 1082847 1268466 1.17
whet 909033 1028778 1.13
fir 43358 56150 1.30
ludcmp 10681 14013 1.31
minver 6454 8546 1.32

Table 2. Accuracy of estimation

served on the out-of-order pipeline (the first set of bars) to
WCET overestimation on the out-of-order pipeline (the sec-
ond set of bars). The in-order execution is performed on
an in-order pipeline model very similar to the out-of-order
pipeline in this paper, execept that instructions are issued
to functional units in program order. It can be seen that the
increased time of in-order execution is significant, some-
times also much more than the corresponding overestima-
tion. This fact justifies that modeling out-of-order pipelines
for WCET analysis is necessary.

Table 2 gives details of the observed WCETs and es-
timated WCETs. ColumnObs. WCETin Figure 2 gives
the observed WCETS of the benchmarks, and columnEst.
WCETgives the estimated WCETS. Their ratios are listed
in column Ratio. The estimated WCETs are not far from
the observed WCETs considering high complexities of out-
of-order execution. The inaccuracy in our estimation comes
from two sources. Firstly, the bounds on execution counts
of basic blocks in the estimation are often higer than what
are actually executed in the simulation. Secondly, the algo-

Program Obs. WCET Est. WCET Ratio
matsum 100813 106160 1.05
fdct 9131 10325 1.13
fft 1082847 1238706 1.14
whet 909033 999650 1.10
fir 43358 52397 1.21
ludcmp 10681 13388 1.25
minver 6454 8070 1.25

Table 3. Accuracy of analysis with paths

Program block based path based
Analysis ILP Analysis ILP

matsum 0.01 0.01 0.03 0.01
fdct 0.06 0.01 0.08 0.01
fft 0.11 0.01 0.50 0.03
whet 0.08 0.01 1.80 0.10
fir 0.63 0.02 2.05 0.07
ludcmp 0.25 0.02 0.53 0.02
minver 0.04 0.04 3.05 0.16

Table 4. Time(sec.) of analysis/ILP solving

rithms for estimating timing intervals of a basic block with-
out considering contexts could introduce some amount of
overestimation. When execution contexts of a basic block
are considered, a simple method is used to conservatively
take into account their impact on the basic block. This
would contribute some amount of overestimation as well.

As has been discussed section 5.2, we can transform the
control flow graph into a path flow graph and use paths as
analysis units. The advantage is that the impact of execution
contexts and underestimation of overlap are dilated with a
longer sequence of instructions and less frequency of such
overestimations being introduced.

The results of program path based analysis are given in
Table 3. The observed WCETs are not affected by analy-
sis methods so the columnObs. WCETis kept unchanged.
Compare to the basic block based analysis, the estimation
produces tigher results as shown by columnEst. WCETas
well as columnRatio.

One concern is how much the complexity is increased
by using program paths as analysis units. Table 4 com-
pares the time of path based analysis to the time of basic
block based analysis. ColumnsAnalysisare the execution
time of our program. The work of our program involves
reading objective code of a benchmark, constructing control
flow graph, performing some transformations on the control
flow graph (such as loop unrolling, inter-procedural analy-
sis), predicting WCET of analysis units, and formulating
the ILP problem at last. ColumnsILP are the time spent by

Program block based path based
#units len/unit #units len/unit

matsum 10 5 14 15
fdct 36 32 27 51
fft 97 18 122 32
whet 64 16 158 26
fir 435 18 330 34
ludcmp 199 14 130 29
minver 333 13 415 34

Table 5. Complexity of analysis

Program Obs. WCET Est. WCET Ratio
matsum 100867 111163 1.10
fdct 10658 12240 1.15
fft 1083416 1270386 1.17
whet 909531 1029380 1.13
fir 44120 59426 1.35
ludcmp 11948 16283 1.36
minver 8235 11053 1.34

Table 6. Accuracy of estimation

the ILP solver, which works on the formulated ILP prob-
lem and produces WCET. It can be seen that the analysis
time and the ILP solving time are very short on all bench-
marks for both basic block based analysis and program path
based analysis. Although there are some amount of increase
with the path based analysis, it is still very efficient.

Table 5 gives some explanation for what accounted
for the increase of complexity in a path based analy-
sis. Columns#unitsare the numbers of analysis units (basic
blocks in CFG or program paths in PFG). Most bench-
marks have more analysis units by using program paths.
Columns len/unit give the average number of instruc-
tions in an analysis unit (epilogue instructions are counted
as they are iterativly processed like body instructions). Be-
cause paths have more instructions than basic blocks, they
take the algorithm more time to run.

Finally, we present results of integrated pipeline and in-
struction cache analysis. With the instruction cache config-
uration (4k bytes) in our experimentation, onlyfdct, lud-
cmp and minver have conflicting cache misses, the other
programs are smaller than the cache in size, therefore only
cold misses arised. In Table 6, we observed similar rela-
tionship between estimation and observation. The slight in-
crease of overestimation is mainly from instruction cache
analysis, as what happened in other WCET analysis tech-
niques which modeled instruction cache.

8. Discussion

Timing anomalies appearing in out-of-order processors
complicate Worst Case Execution Time (WCET) analysis
by invalidating the assumption that local worst case always
lead to global worst case. On the other hand, an exhausive
enumeration of all possible local cases is anticipated to be
quite inefficient. In this paper, we have modeled an out-of-
order processor pipeline. We also discussed how modelings
of other microarchitectures. Two important microarchitec-
tures: instruction cache and branch prediction are used as
examples (the integratio with instruction cache has been im-
plemented and results are fairly accurate). From these ex-
amples, we believe integrating our pipeline analysis engine
with modelings of other processor components is promis-
ing. However, it only provides a framework. WCET analy-
sis on a processor also depends on whether we have a so-
lution for modeling its other microachitectures. For exam-
ple, we need a good quality technique for branch prediction
modeling in Section 6.2 and Section 6.3. This is part of our
future work.

References

[1] D. Burger and T. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Technical Report CS-TR-1997-1342, University of
Wisconsin, Madison, June 1997.

[2] CPLEX. The ILOG CPLEX Optimizer v7.5, 2002. Com-
mercial software, http://www.ilog.com.

[3] J. Engblom.Processor Pipelines and Static Worst-Case Exe-
cution Time Analysis. PhD thesis, Uppsala University, Swe-
den, 2002.

[4] C. Ferdinand and R. Wilhelm. Fast and Efficient Cache Be-
havior Prediction for Real-Time Systems.Real-Time Sys-
tems, 17((2/3)), 1999.

[5] B. Fields, R. Bodik, and M. Hill. Slack: Maximizing perfor-
mance under technological constraints. In29th ACM Annual
International Symposium on Computer architecture, 2002.

[6] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Har-
mon. Bounding pipeline and instruction cache performance.
IEEE Transactions on Computers, 48(1), 1999.

[7] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The Influence of Processor Architecture on the Design and
the Results of WCET Tools.Proceedings of the IEEE, 91(7),
July 2003.

[8] J. Hennessy and D. Patterson.Computer Architecture- A
Quantitative Approach. Morgan Kaufmann, 1996.

[9] Y. Hur, Y. H. Bae, S.-S. Lim, S.-K. Kim, B.-D. Rhee, S. L.
Min, C. Y. Park, H. Shin, and C. S. Kim. Worst case tim-
ing analysis of RISC processors: R3000/r3010 case study. In
IEEE Real-Time Systems Symposium (RTSS), 1995.

[10] X. Li, T. Mitra, and A. Roychoudhury. Accurate timing anal-
ysis by modeling caches, speculation and their interaction. In
ACM Design Automation Conf. (DAC), 2003.

[11] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance estima-
tion of embedded software with instruction cache modeling.
ACM Transactions on Design Automation of Electronic Sys-
tems, 4(3), 1999.

[12] S.-S. Lim, Y. Bae, G. Jang, B.-D. Rhee, S. Min, C. Park,
H. Shin, K. Park, and C. Kim. An accurate worst-case tim-
ing analysis technique for RISC processors.IEEE Transac-
tions on Software Engineering, 21(7), 1995.

[13] S.-S. Lim, J. Han, J. Kim, and S. Min. A worst case
timing analysis technique for multiple-issue machines. In
IEEE Real Time Systems Symposium (RTSS), pages 334–345,
1998.

[14] T. Lundqvist and P. Stenström. Integrating path and tim-
ing analysis using instruction-level simulation techniques. In
Intl. Workshop on Languages, Compilers and Tools for Em-
bedded Systems (LCTES), 1998.

[15] T. Lundqvist and P. Stenström. An integrated path and tim-
ing analysis method based on cycle-level symbolic execu-
tion. Journal of Real-Time Systems, 17(2-3), 1999.

[16] T. Lundqvist and P. Stenström. Timing anomalies in dynam-
ically scheduled microprocessors. InIEEE Real-Time Sys-
tems Symposium, 1999.

[17] K. McMillan and D. Dill. Algorithms for interface timing
verification. InIEEE International Conference on Computer
Design, 1992.

[18] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs.Journal of Real-time Sys-
tems, 1(2), 1989.

[19] Real-Time Research Group at Seoul National University.
SNU Real-Time Benchmarks.http://archi.snu.ac.
kr/RESEARCH/index.html .

[20] J. Schneider and C. Ferdinand. Pipeline behavior prediction
for superscalar processors by abstract interpretation. InACM
Intl. Workshop on Languages, Compilers and Tools for Em-
bedded System (LCTES), 1999.

[21] A. Shaw. Reasoning about time in higher level language
software.IEEE Transactions on Software Engineering, 1(2),
1989.

[22] G. Sohi. Instruction issue logic for high-performance, inter-
ruptible, multiple functional unit, pipelined computers.IEEE
Transactions on Computers, 39(3), 1990.

[23] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and pre-
cise WCET prediction by separated cache and path analysis.
Journal of Real Time Systems, May 2000.

[24] R. Wilhelm. Why AI + ILP is good for WCET, but MC is
not, nor ILP alone. InVerification, Model Checking and Ab-
stract Interpretation (VMCAI), LNCS 2937, 2004.

[25] T. Yen and W. Wolf. Performance estimation for real-time
distributed embedded systems.IEEE Transactions on Paral-
lel and Distributed Systems, 9(11), 1998.

[26] N. Zhang, A. Burns, and M. Nicholson. Pipelined proces-
sors and worst case execution times.Journal of Real-Time
Systems, 5(4), 1993.

	new report.pdf
	TRA204.pdf
	Table 1 Datasets

	1:

