
T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l of C o m p u t i n g
Computing 1, 13 Computing Drive, Singapore 117417

TRA4/17

Learn-as-you-go with Megh:
Efficient Live Migration of Virtual Machines

Debabrota Basu, Xiayang Wang, Yang Hong, Haibo Chen,
and Stéphane Bressan

April 2017

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or tutorial
article, which has been submitted for publication in a journal or for
consideration by the commissioning organization. The report represents the
ideas of its author, and should not be taken as the official views of the School
or the University. Any discussion of the content of the report should be sent to
the author, at the address shown on the cover.

Mohan KANKANHALLI
Dean of School

Learn-as-you-go with Megh:
Efficient Live Migration of Virtual Machines

Debabrota Basu∗, Xiayang Wang†, Yang Hong†, Haibo Chen†, Stéphane Bressan∗
∗School of Computing, National University of Singapore, Singapore

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China

Abstract—Cloud providers leverage live migration of virtual
machines to reduce energy consumption and allocate resources
efficiently in data centers. Each migration decision depends on
three questions: when to move a virtual machine, which virtual
machine to move and where to move it? Dynamic, uncertain
and heterogeneous workloads running on virtual machines make
such decisions difficult. Knowledge-based and heuristics-based
algorithms are commonly used to tackle this problem. Knowledge-
based algorithms, such as MaxWeight scheduling algorithms, are
dependent on the specifics and the dynamics of the targeted Cloud
architectures and applications. Heuristics-based algorithms, such
as MMT algorithms, suffer from high variance and poor
convergence because of their greedy approach. We propose a
reinforcement learning approach. This approach does not require
prior knowledge. It learns the dynamics of the workload as-it-
goes. We formulate the problem of energy- and performance-
efficient resource management during live migration as a Markov
decision process. While several learning algorithms are proposed
to solve this problem, these algorithms remain confined to the
academic realm as they face the curse of dimensionality. They are
either not scalable in real-time, as it is the case of MadVM, or
need an elaborate offline training, as it is the case of Q-learning.
We propose an actor-critic algorithm, Megh, to overcome these
deficiencies. Megh uses a novel dimensionality reduction scheme
to project the combinatorially explosive state-action space to
a polynomial dimensional space with a sparse basis. Megh
has the capacity to learn uncertain dynamics and the ability
to work in real-time. Megh is both scalable and robust. We
implement Megh using the CloudSim toolkit and empirically
evaluate its performance with the PlanetLab and the Google
Cluster workloads. Experiments validate that Megh is more cost-
effective, incurs smaller execution overhead and is more scalable
than MadVM and MMT. We explicate our choice of parameters
through a sensitivity analysis.

I. INTRODUCTION

Infrastructure as a Service (IaaS) environments of Cloud
computing leverage virtualization technology [1] to provide a
shared platform of resources accessible at any time and from
anywhere through the Internet. Cloud providers allocate Virtual
Machine instances (VM) on a cluster of Physical Machines
(PM). As VMs allow users to share physical resources
concurrently, they enhance utilization of resources and therefore
increase return on investment for Cloud providers. Making such
an optimal allocation is challenging because a large number
of users accessing the Cloud, the diversity of applications, and
the heterogeneity of hardware yield significant variations in
performance not only in general-purpose IaaS Clouds but also
in Clouds with specialised features like scientific computing,
online transaction or data storage. Furthermore, the uncertain
dynamics of workloads, creating abrupt and unpredictable
changes in resource utilization, requires dynamic allocation

of VMs. In order to avoid such disruption of service, [2] and
[3] proposed the idea of a live migration scheme. During live
migration, pages from the memory of the migrating VM are
copied to the destination machine while it keeps on running
on its present host. When properly carried out, this process
takes place with minimal downtime and minimal noticeable
effect from the user end. Live migration raises three questions
to the Cloud administrator: which VM to move, where, i.e, to
which physical host to move, and when to move?

These resource management decisions during live migration
drastically affect the energy consumption of the Cloud data
centres. As energy consumption contributes almost 75% of the
operation cost of a data center [4], from the Cloud provider side
it is the most important metric for live migration. Migration
events may also cause significant deterioration of the Quality of
Service (QoS) promised by the Cloud providers and can violate
the Service Level Agreements (SLAs) [5]. These agreements
also define monetary penalties for the Cloud providers when
violated. In this work, we develop cost models for the SLA
violations and the energy consumption during a live migration
and aggregate them to construct an operation cost.

The workloads running on such VMs are uncertain, dynamic
and heterogeneous due to eclectic requirements of users,
miscellaneous applications ranging from scientific computing
to data storage and diverse Cloud architectures. These features
are depicted in Figures 1(a) and 1(b). This nature of workload
makes energy- and performance-efficient resource management
in data centres difficult. Knowledge-based and heuristics-based
algorithms are applied for this purpose. Knowledge-based
algorithms, such as MaxWeight scheduling algorithms [18], are
oblivious to the specifics and the dynamics of Cloud architec-
tures and applications that do not belong to their knowledge-
base. Heuristics like dynamic consolidation algorithms [6],
[7] do not use such specific knowledge base. They save the
power by greedily accumulating a majority of VMs on a
smaller number of servers. They improve the performance
by taking cost-effective VM migration decisions from under-
or over-utilized servers. These heuristics may become unstable
while tackling uncertain dynamics. They may make suboptimal
decisions due to their myopic and greedy nature.

It has motivated us to look into reinforcement learning
(RL) methods. RL [8] is a paradigm of machine learning,
where an agent operating in an uncertain environment tries to
take optimal decisions, by learning more about the dynamics
of its surroundings. If we consider the Cloud administrator
system as a learning agent and the user workloads operating

1

10

100

1 251 501 751 1001 1251 1501 1751 2001

W
or

kl
oa

d
(i

n
%

 o
f

C
P

U
 u

sa
ge

)

Time (in 5 minutes)

MAX 90 PERCENTILE MEAN 10 PERCENTILE

(a) PlanetLab Workload

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

x 10
6

Starting Time (in seconds)

T
a

s
k
 I

D

(b) Google Cluster workload

Figure 1. Dynamics of PlanetLab workloads and starting times of tasks in
Google Cluster.
on it with corresponding resource distribution as the uncertain
environment, our problem manifests as an RL problem, Here,
the system tries to take optimal live migration decisions
by learning the dynamics of the workload and adapting
accordingly. The policies or the sequence of decisions made
by RL optimize a long-term goal, which is live migration and
resource management of data center with minimum operation
cost, based on immediate costs of actions or decisions. As the
number of ways the VMs can be allocated to the hosts or PMs
is combinatorially large, it creates a huge state space and also
makes RL intractable. This curse of dimensionality restricts the
applicability of recently proposed learning algorithms in real-
life scenarios. They are either not scalable in real-time, as it is
the case of MadVM, or need an elaborate offline training, as it
is the case of Q-learning. We propose an actor-critic algorithm,
called Megh, to solve this problem as-it-goes. It maps the state
space into a smaller vector space and learns the dynamics of
the workloads without assuming any model or prior knowledge.
It makes Megh a robust scheme to learn the uncertainty and
diversity of workloads without using any prior model. At each
step, the sparsity of the projected space is leveraged to act
effectively without creating any significant overhead in the
course of live migration. The data structure exploiting this
sparsity makes Megh time-efficient and therefore, a contending
real-time solution for energy- and performance-efficient live
migration.

We evaluate the performance of our system by simulating it
using the CloudSim toolkit [9] over workload data extracted
from PlanetLab [10] and Google Cluster [11]. We compare
Megh with state-of-the-art dynamic consolidation based Min-
imum Migration Time (MMT) algorithms: THR-MMT, IQR-
MMT, MAD-MMT, LR-MMT, and LRR-MMT [6], [7]. We
also test the performance of Megh against MadVM [12], which
is the most recent RL-based algorithm for dynamic resource
management in a data center. Experiments prove the efficiency
of Megh as it significantly reduces the total operation cost
and the number of VM migrations occurring over a period
of time with respect to the competing algorithms. Unlike
MadVM suffering from the curse of dimensionality, Megh
takes significantly smaller execution time than MMT heuristics
even for large data center configurations. The results validate
the robustness, efficiency and real-time execution of Megh to
cost-effectively decide live migrations under uncertain workload
dynamics. We also produce a comparative scalability analysis
demonstrating Megh’s better scalability than THR-MMT. We
explicate our choices of parameters controlling the exploration-
exploitation trade-off of Megh through a sensitivity analysis.

The rest of this paper is organised as follows. In Section II,

we review the related work. In Section III, we depict the system
model and build up the mathematical formulation to calculate
costs of energy consumption and SLA violation. We introduce
the problem of cost-optimal live migration as a reinforcement
learning problem and formulate it mathematically in Section IV.
Following that in Section V, we propose our novel algorithm
Megh to solve it online. In Section VI, we elaborate the detailed
experimental set-up and also evaluate the performance of Megh.
We discuss the future research directions and conclude the paper
in Section VII.

II. RELATED WORKS

While Megh tries to take energy and performance efficient
decisions for resource management during live VM migrations,
our methodology is based on reinforcement learning. Here, we
review the related works in these two areas.

Dynamic VM Consolidation: A profitable strategy for
Cloud vendors is the dynamic consolidation of underutilized
virtual machines to fewer physical servers to save hardware, to
reduce energy consumption [13] and to eliminate hotspots [14].
Due to the dynamic nature of Cloud workloads, there have been
many studies in the field to investigate an optimal dynamic
VM provisioning plan. One key requirement of dynamic VM
consolidation is to pack VMs tightly while preserving SLAs.
Mann et al. [15] recently presented an extensive survey of the
problem models and optimization algorithms. Wang et al. [16]
consider the dynamic network bandwidth demand for real
workloads and model the VM consolidation into a Stochastic
Bin Packing problem. Song et al. [17] similarly applied a
variant of the relaxed on-line bin packing model, which was
shown to work well on a small-scale cluster. Maguluri et
al. [18] further modelled VM consolidation using a stochastic
model where jobs arrive according to a stochastic process,
and described MaxWeight algorithms, a family of frame-based
non-preemptive VM configuration policies to improve overall
throughput. Compared to existing models and algorithms,
MEGH makes no a priori assumption on the workload arriving
pattern or load distribution, which may be adapted to various
scenarios while requiring a small number of migration requests
and thus having little impact on running workloads.

In the existing literature, the Minimum Migration Time
(MMT) family of algorithms [6], [7] function without any
assumption on the workload model like Megh and perform
in real-time. Due to this general structure and online mode
of operation, we have compared Megh’s performance with
them. These algorithms are heuristics designed for energy
and performance efficient dynamic consolidation of VMs in
Clouds. They start migrating a VM when its utilization crosses
a certain threshold. The threshold can be fixed (for THR-
MMT) or determined adaptively (for IQR-MMT, MAD-MMT,
LR-MMT and LRR-MMT) from the summary statistics of
workloads’ history. The VM is migrated to a different host
such that the migration time is minimum. These methods are
greedy heuristics that suffer from high variation and instability
like other heuristic-based algorithms, while Megh, being a
learning algorithm, does not.

Reinforcement Learning Algorithms: Reinforcement
learning (RL) [8] is a paradigm of machine learning where
an agent aims at taking optimal decisions by developing an
understanding of the constantly evolving environment around
it. Markov decision processes (MDP) [19] are a model for
RL. MDPs assume that it is sufficient to remember the present
state of the system to decide the next decision or action, while
rewards of state-action pairs carry the relevant information of
system’s history. Thus, the agent tries to take a policy or a
sequence of decisions that will maximize the cumulative sum
of rewards acquired by the agent.

[20], [21] apply Q-learning [22] for energy efficient
management of cloud resources. [23] uses it for automatic
reconfiguration of resource sharing VMs. Q-learning is an
offline algorithm. We have to go through computationally
expensive training periods of a few hundred iterations before
using it in an online setup. But there is no reliable guarantee
on the optimality of Q-learning for online learning setup for
any approximated value function [24]. As our problem has
an online setup and it may face a sudden variance in the
workload on which it is trained due to change in user base or
their applications, Q-learning has a high probability to break
down or perform sub-optimally.We have done a comparative
performance analysis with respect to Q-learning. We omit an
elaborate description of that in this article due to Q-learning’s
dependence on offline training and presence of a recent, on-line
approach called MadVM.

MadVM [12] models the energy-efficient dynamic resource
management of VMs in a data center as an approximate MDP.
It assumes no prior knowledge of workload and uses value
iteration [25] algorithm to solve the problem. At each step,
MadVM tries to select decisions that simultaneously maximize
the expected cumulative rewards of each of the VMs. Their
approach is indirect as they do not try to optimize directly over
a policy space but rather rely exclusively on value function
approximation, that hopefully returns a near-optimal policy.
Due to the combinatorially large state space of the problem,
they also face the curse of dimensionality of RL approach. Thus,
MadVM connects the policy space and the value functions
through a key state selection procedure. This dimensionality
reduction mechanism, however, is computationally expensive.
MadVM tries to simultaneously optimize the utility functions of
each of the VMs. Thus, it has to bookkeep transition functions
and update key states for each of them. This makes MadVM
poorly scalable for real-time applications.

Unlike critic based MadVM, Megh relies on the actor-
critic [26] approach of RL. The actor tries to estimate the policy
as an incremental functional approximation problem. The critic
leverages this estimated policy for approximating and updating
value function using samples collected as-it-goes. This feedback
ensures better convergence property and stability. In our paper,
we use such an off-policy actor-critic framework of least-square
policy iteration (LSPI) algorithm [27] as a skeleton. We utilize
the projection based dimensionality reduction techniques and
sparsity-based improved data structures described in Section V
to construct our real-time learner Megh.

III. THE CLOUD DATA CENTRE: SYSTEM AND COSTS

In the following subsections, we describe the system model
of a data centre used by Megh and formulate cost models for
energy consumption and SLA violations.
A. System Model

In IaaS environments Cloud providers serve the users with
virtualized computing resources over the Internet. In order to
model such a system, we consider a data centre consisting
of M heterogeneous physical machines (PMs) or hosts. Each
of these PMs is characterized on the basis of the number of
CPUs, the number of cores, the amount of RAM and the
network bandwidth. Here, the performance of a CPU is defined
in Millions Instructions Per Second (MIPS). In our paper,
we consider all of the CPUs belonging to the same PM as
a single-core CPU with the cumulative MIPS performance
of all of them. Now, independent users submit requests for
provisioning of computing resources to the Cloud and are
assigned to N heterogeneous VMs hosted by M PMs. Each of
the VMs is allocated CPU performance, memory size, RAM,
and network bandwidth as per the users’ requirements. We
assume no a priori knowledge of the applications, workload
dynamics and the time of provisioning of VMs. This allows
us to deal with both general-purpose and specialised setting
of mixed workloads with uncertain dynamics that utilize the
resources of a PM concurrently.

Our learning algorithm, Megh, is implemented as a part
of the global resource manager of the Cloud. This global
manager acts as an interface between users’ workloads and
requirements, and the virtualization layer. The Virtual Machine
Managers (VMMs) operating at each of the physical nodes act
as the continuous monitoring systems. They send the workload
dynamics of each VM and the resources utilized by them to
the global manager. The global manager, which is acting as
the learning agent in Megh, accumulates the information and
allocates the resources in such a way that will minimize the
energy consumption as well as the SLA violation. Following
this, the decision is sent to VMMs as a resource map and VMs
are migrated and consolidated accordingly. Megh may move
the VMs allocated in an underloaded PM to another PM with
potential capacity and put the first PM down to sleep. Similarly,
if a PM gets overloaded, some of the VMs operating on it are
migrated to another PM such that the expenditure for energy
consumption and SLA violation remains minimal.

B. Energy Consumption Cost

Energy consumption cost of the Cloud data center can be
considered as a function of time Cp(t), such that

Cp(t) = cp

∫ t

0

P (θ)dθ, ∀t ≥ 0. (1)

Here, cp denotes the cost of consuming 1 Watt of power
for 1 second. It is a fixed constant according to the place
where the data center is built up, whereas P (θ) is the function
representing the amount of power (in Watts) consumed by the
data center at time θ (in seconds). This function does not only
depend on the workload dynamics of VMs but also on the CPU

performance, memory size, disk storage and cooling system of
the PMs installed in the data center [28]. Following the works
by [7], we leverage the power consumption data provided by
the SPECpower benchmark [29], [30] rather than moving our
focus to precisely modelling P (θ). This benchmark provides
energy consumption level y for a collection of servers with
different CPU architectures under a workload of x% working
on its CPU, as shown later in Table I. Now, if we assume the
Cloud management system extracts the workload dynamics at
a certain interval, say τ > 0, we can model the cost of energy
consumption up to time t as

Cp(T) = cp

T∑
k=0

M∑
i=1

yi(kτ)τ, ∀T ≥ 0 (2)

where, T , d tτ e represents the discretized version of time
t, yi(kτ) is the power consumed by the ith PM at time kτ
and M denotes the total number of PMs operating in the data
center.

C. SLA Violation Cost

Though energy consumption covers the major part of
the Cloud provider’s expenditure, Quality of Service (QoS)
provided by the Cloud is a concern from the user’s side. Spe-
cifically, QoS is negotiated using a legal agreement between the
user and the Cloud provider, called Service Level Agreement
(SLA). SLAs provided by companies like Amazon, Microsoft
and Google.confirm that service providers promise to pay the
user certain monetary penalties if the QoS degrades below
certain levels. We also observe this QoS is defined as the
uptime percentage of the user. It means the percentage of total
access time the user can utilize the Cloud services without
any interruption. Though some of the Cloud providers do
not consider any continuous downtime below 5 minutes as a
degradation of QoS to provide the system privilege, in this
paper, we have considered the exact downtime without such
bias. Thus, the total SLA violation cost of a Cloud data center
with M PMs and N VMs can be expressed as,

Cv(t) =

N∑
j=1

cjv(t), ∀t ≥ 0 (3)

where, cjv(t) is the SLA violation cost for VM j until time t.
Following the aforementioned convention, it can be defined as

cjv(t) =



cv1, if downtime percentage up to t
∈ (0.05%, 0.10%]

cv2, if downtime percentage up to t
> 0.10%

0, otherwise

as the system model considers each VM is used to virtually
assign computing resources to each of the users.

As we try to allocate and manage the resources by migrating
the VMs from one machine to another, we face two scenarios
of QoS degradation. In the first case, when one or multiple
VMs are allocated to a PM, it faces a sudden rise of workload.
This PM gets overloaded. Overloading happens when VMs try
to use more resources than the capacity of the host PM. This

creates a scenario where we need to migrate VMs from that
host to another. But due to discretized time of observations by
the global learning agent and the inherent delay of the host
system to react and adapt to the scenario, it takes some time
before the migration decision is taken and executed. During
this period the VMs working on that host remain suspended
or their performance degrades substantially. This phenomenon
introduces a downtime in each of the VMs working on that host
and is termed as the overloading time. In this paper, we denote
overloading time of host PM i at time t as Toit . Toit represents
the total time during which the host i has experienced the
utilization of greater than β% leading to overloading. If the
active time Tait of the host i is defined as the total time for
which it is serving the users, we can define the percentage of
overloading time as

Oi(t) ,
Toit

Tait
. (4)

Though the live migration transfers a VM from a host PM
to another destination PM without suspending the running
application, it still faces a downtime. The migration time is
defined as the time required to copy all the pages of a VM
from its present host memory to the destination memory. If
Mjt is the amount of memory used by VM j right before
initiating the migration at time t, and, Bjt is the available
bandwidth of the network, expected migration time of VM j
is expressed as TM jt ,

Mjt

Bjt
. Now, the downtime of VM j is

estimated as the time for which the estimated CPU utilization
ûj(t) will be less than a certain threshold. This threshold can
be defined as α% > 0 of the workload uj(t) trying to act on
the VM from the user side. Thus, we can estimate the live
migration downtime of VM j at time t as

Tdjt ,
∫ t+TM jt

t

1 (ûj(θ) < αuj(θ)) dθ,

where uj(t) is the CPU utilization by VM j at that moment
and 1 is the indicator function defined as

1 (ûj(t) < αuj(t)) ,

{
1, ûj(t) < αuj(t)

0, otherwise
, ∀t ≥ 0.

If Trjt is the total active time requested by the VM j till
the time t, we can estimate the percentage of live migration
downtime of VM j as

Dj(t) ,
Tdjt

Trjt
, (5)

So the total downtime percentage for VM j up to time t is
defined as the sum of its downtime and overlap of its operation
time on a PM and overloading time of the corresponding host
up to time t.Thus, Equation (4) and (5) give us a concrete
mathematical model to calculate the SLA violation cost for
each of the VMs.

IV. LIVE MIGRATION AS A LEARNING PROBLEM
In this section, we formulate the problem of energy- and

performance-efficient resource management during live migra-
tion of VMs as a reinforcement learning problem.

Let us consider a Cloud data center with M PMs. Each of
the PMs has homogeneous CPU capacity h. Each of the VMs
is assigned to each of the users on the basis of their requests.

Though the workloads and requirements of users may differ,
the maximum CPU capacity that can be allocated to a VM is
a constant, say v. Thus, under the worst case scenario, when
each of the VMs will ask for maximum CPU capacity, the
maximum number of VMs n that can be allocated to a single
host is h

v . Furthermore, the total number of VMs N that can be
allocated to the data center or the maximum number of users
that the Cloud can handle at any instance is Mn. The VMs are
accessed by a large volume of users with diverse requirements
and applications, and the dynamics of these workloads are also
uncertain. This may cause a sudden change in workloads of
one or multiple VMs and consequently overloading of hosts.
Then one of the VMs working on the overloaded host has to be
migrated to another destination PM such that cost for energy
consumption and SLA violation remains minimal. But while
doing so the system has to decide which VM to move to which
destination host and when to start moving, so that the penalty
will be minimum ensuring maximum profit of Cloud provider
and also maximum QoS for users. In general, this problem of
resource allocation during VM migration is NP-hard.

We can model this process of live migration as a Markov
Decision Process [19]. In this model, the state space S is
Cartesian product of C, the set of all configurations of the VMs
on the PMs, and W , the workloads operating on the VMs
at any instance. At a certain instance, W is an array of N
elements, where an element represents the CPU usage of a
VM at that instance. Since W varies continuously, it makes the
state space infinite dimensional and introduces uncertainty in
state transitions. The action space A corresponds to migration
of any of the VMs from one host to another depending on
the operating workloads. Each action is represented by a pair
(j, k), where j is the migrating VM, and k is the destination
host. In order to capture the uncertainty of workloads, we
define transition function f : S × A → P(S), where P is a
probability measure over state space. Given the present state
and an action, f returns the probability to reach another state.
But in our problem, it is not known a priori and has to be
learned. The cost of changing a configuration st−1 of VMs to
another configuration st is given by
C(st−1, st) = 4Cp(st−1, st)+4Cv(st−1, st), t ∈ [1, T] (6)

where, 4Cp(st−1, st) and 4Cv(st−1, st) are the costs of
energy consumption and SLA violation in the interval (t− 1, t].
Here, Cp and Cv are defined by Equations (2) and (3)
respectively. We can observe 4Cp(st−1, st) is always positive
as the system will always consume some energy whether or
not any migration happens, whereas 4Cv(st−1, st) ≥ 0. The
equality holds if and only if there is no SLA violation in that
interval.

Thus, the problem reduces to finding the sequence of
configurations that minimizes the sum of future per-stage
costs. Unlike MadVM that assumes an average cost structure
and computationally considers the effect of a migration is
limited to a fixed future time horizon, we assume an infinite
horizon [8] structure. This means an action will affect all
the future states and actions of the system. But it makes the
cumulative sum of future per-stage costs infinite. In order

to circumvent this problem a discount factor γ ∈ [0, 1) is
introduced. Mathematically, it makes the cumulative sum of
per-stage costs convergent. Physically, it means with each
passing instance the effect of a past action decays by γ. Thus,
it let the system give more importance to immediate costs
than to costs distant in the future, which follows a practical
intuition. Now, the problem translates into finding the sequence
of configurations that minimizes a discounted cumulative cost.
Under Markov assumption, a configuration change depends on
its present state only. Given the current configuration and
workloads, i.e the current state st, a policy π : S → A
determines the next decision at. We define the cost-to-go
function V π for a policy π as

V π(s) , Ef

[∞∑
t=1

γt−1C(st−1, st)

]
(7)

such that the initial state s0 = s, and st is the state reached
from state st−1 through an action π(st−1)). The value of V π(s)
represents the expected cumulative cost for following the policy
π from the current configuration s. Thus, V π(s) allows us to
optimize the long-term effect of migration decisions, unlike
greedy MMT algorithms that try to minimize the present cost
only. Let U be the set of all policies for the given set of VMs
on the cluster of PMs. Now, our problem can be phrased as

π∗ , argmin
π∈U

V π(s0). (8)

i.e, to find the optimal policy π∗ that minimizes the expected
cumulative cost.

V. MEGH: LEARN TO MIGRATE AS-YOU-GO

Depending on the cost model developed in Section III
and the problem formulation in Section IV, here we propose
an algorithm, Megh, to solve the problem of live migration.
This problem consists of three basic questions: when to start
migrating the VM, which VM to migrate, and where i.e, to
which PM to migrate it.

Megh answers these questions by solving the minimization
problem of Equation (8). This equation shows that optimal
decision making is analogous to finding out the optimal function
π∗ that minimizes the cost-to-go function. We can consider
this as a functional approximation problem over the space U.
In order to do so, we begin with an initial guess of the policy
π0. Following that as we gain more information about the
configuration of VMs and also the dynamics of workload on
them, we improve our approximation consequently such that it
keeps the current estimation of cost-to-go function minimum.
In RL literature, this strategy is known as policy iteration [8].

If the stochastic nature of workload W i.e, the transition
function f is known a priori, we can apply Bellman’s dynamic
programming technique [31] to update the estimate of cost-
to-go function at every time step using the following formula,

V πt(s) = Ef
[
C(s, s′) + γV πt−1(s′)

]
. (9)

Thus, the updated policy would be πt = argminπt∈U V
πt(s).

The algorithm terminates when there is no or very small
change in the policy. Policy iteration has strong optimality
and convergence properties [32].

In this problem policy iteration suffers from two main issues.
Firstly, to update the cost-to-go function in Equation (9) and to
find the optimal policy, we have to search through the whole
state-action space. But in this case, the state space which
consists of all possible configurations of VMs on all the PMs
is combinatorially large. This high dimensionality of state space
S makes the computation expensive and almost impossible to
perform in real-time. This exponential blow-up due to huge state
space is called the curse of dimensionality [32]. Besides this, it
is also impossible to calculate the expectation in Equation (9).
Because of the stochastic nature of workload, its correlation
with VM configurations and their transitions are not known a
priori. Also to conserve the robustness and universality of our
method, we cannot restrict this workload dynamics to a specific
model. Indeed that would narrow down the applications and
the hardware architectures the algorithm can deal with.

In this work, we propose two methodologies to solve these
issues. In order to solve the curse of dimensionality, which
includes searching over a large state-action space to find out
the estimate of the cost-to-go function, we project the state-
action space to a d = N ×M dimensional space X . X can
be spanned with d basis vectors {φjk}N,Mj=0,k=0. Each of the
basis φjk corresponds to an action (j, k) such that thejkth

element of it is one, and all others are zero. All the actions or
configuration changes in the Cloud can be represented using
these basis vectors or linear combinations of them. The basic
rationale behind this projection is when transitioning from one
state s to another state s′ happens, we can reach only a certain
part of the state space which is one action away from the
present state s. Thus rather than searching over the whole state
space in each and every step it is logical to search in a subspace
X that contains all the states s′ reachable from s by actions
φjk or linear combinations of them. Now, we approximate the
cost-to-go function as V (st+1) = θTφat , where at = πt(st)
is the action taken at time t. Thus the whole state-action space
of VM configurations, which is combinatorially explosive, is
now projected down to a polynomial dimensional vector space
with a sparse basis. This let us update the cost-to-go function
effectively in real-time.
Theorem 1. There exists a unique θ which approximates the
value function as V (s) = θTφπ(s).
Proof. See Appendix A for the details.

Still the expectation of the cost-to-go function is not
computable due to lack of prior knowledge of workload
dynamics and how it affects the VM configurations and their
transitions. In order to capture this notion, we create a stochastic
operator T . It accumulates the possibility of using an action to
move to another configuration from the present one depending
on the nature of workload and the changes caused by them. In
this work, we start with T0 = 1

δ Id, where δ is a large positive
number and Id is an identity matrix of order d. Here, we have
considered δ as d. It implies that initially, there is no bias and
the system can migrate any of the VMs to any of the PMs
equally probably. As the system extract information of the
workload and VM configurations at each time step t, it decides

Algorithm 1
1: function MEGH(S, A, γ, ε, Temp0)
2: Initialize δ ← d,B0 ← 1

δ Id×d, φ0 ← 0d,
3: θ0 ← 0d, π(s0)← 0d, z0 ← 0d, C0 ← 0
4: while t ≥ 1 do
5: at ← argmaxa∈A πt(st)
6: Take action at.
7: Observe state st+1.
8: Ct+1 ← Calculate cost using Equation (6).
9: Bt+1 = T−1t+1 update using Equation (10).

10: zt+1 ← zt + φatCt+1

11: θt+1 ← Bt+1zt+1

12: π(st+1)← PolicyCalculator(φat , θt+1)
13: end while
14: end function

an action at according to the policy πt. Using this information,
we can update the operator T as

Tt+1 = Tt + φat
[
φat − γφπt(st+1)

]T
. (10)

where, φπt(st+1) represents the probable action at time t+ 1,
if the policy πt is followed at the next time instance. Thus,
Equation (10) captures the effect of present state and action
and its influence in future action with a discount γ.

In Megh, we plug in these two schemes of polynomial size
projection space X and incremental update of the operator T
to Least-Square Policy Iteration algorithm [27]. This algorithm
acts in the actor-critic format [26] such that the algorithm
first tries to find out an estimation of cost-to-go function by
least-square estimation in the actor format and then to update
the policy such that it maximizes the estimate in the critic
format. The pseudo-code of Megh is depicted in Algorithm 1.

Theorem 2. If for any policy π, there exists a vector θ such
that Vπ(s) = θTφπ(s) for any configuration s, Algorithm 1
will converge to an optimal policy.
Proof. See Appendix B for the details.

Algorithm 2
1: function POLICYCALCULATOR(φat , θt+1)
2: Tempt+1 ← Temptexp(−ε)
3: for all i = 1, . . . , d do
4: Q(st+1, ai)← φTaiθt+1

5: end for
6: MIN_Q← minaQ(st+1)
7: for all i = 1, . . . , d do
8: π(st+1)i ← exp

[
−Q(st+1,ai)+MIN_Q

Tempt+1

]
9: end for

10: end function
Instead of greedily choosing the action with maximum

V πt(st+1), we have used Boltzmann exploration. It is shown in
Algorithm 2. This technique compares the goodness of an action
with respect to the others and lets the algorithm explore more.
Here, we have started with an initial temperature value Temp0

and decay it consequently with a factor exp(−ε). Initially, the
large Temp means rather than choosing the maximum greedily

Table I
POWER CONSUMPTION OF SERVERS IN WATTS FOR DIFFERENT LEVEL OF WORKLOAD [29], [30]

Server Type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

Table II
PERFORMANCE EVALUATION FOR PLANETLAB

Algorithms THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (Dollar) 1347 1504 1367 1392 1392 1155
#VM migrations 325299 444624 331304 324079 324079 2309

#Active hosts 666 684 682 692 692 203
Execution time (ms) 2016 3077 2226 1924 2080 1426

it is trying to explore more. But with time as Temp decreases,
it turns into as same as the greedy selection of the maximum.

A. Managing the Complexity Bottleneck
Algorithm 1 has space complexity of O(d2) and time

complexity of O(d3). Though it is computationally cheaper
and faster than the actual combinatorially explosive problem
scenario, still it can be slow enough for a real-time system
operating over a large number of VMs and PMs. The bottleneck
in this whole process is storing the d×d matrix B and finding
out the inverse of the operator T to update B at each time-step,
as shown in Line 9 in Algorithm 1. If we use the Gauss-
Jordan elimination process [33] provided by linear algebra
packages [34], it costs a time complexity of O(d3). In order
to find out the inverse incrementally at every step, we use
Sherman-Morrison Formula [35] on Equation (10) given by,

Bt+1 = Bt −
Btφat

[
φat − γφπt(st+1)

]T
Bt

1 +
[
φat − γφπt(st+1)

]T
Btφat

. (11)

It reduces the time complexity of every step to O(d2).
Now, we can reduce this complexity by leveraging the

sparsity of the basis vectors φai’s. Since all the zero entries
are redundant in the calculation of product, we can store only
the non-zero entries of the matrix B and vector φai as a triplet
(row number, column number, value). This reduces the initial
storing size to O(d). Because during initialization we start with
a diagonal matrix of order d and d basis vectors each with single
non-zero entry. The storing size increases at each step as per
the number of migrations happened during the interval. Thus
the multiplication in Equation (11) turns into simply choosing
the non-zero terms in Bt according to the 1 entries in φai’s
involved in the calculation and then adding or subtracting them.
It reduces the time complexity of Line 9 in Algorithm 1 to
O(#m), where #m is the number of migrations per step. The
aforementioned use of online update and inversion technique,
and also leveraging the sparsity of the basis vector reduces both
the space and time complexity of Megh substantially. These
techniques give Megh the speed-up to be a real-time system
while keeping its structure and learn-as-you-go strategy intact.

VI. PERFORMANCE EVALUATION
A. Experimental Setup

We perform our experiments using the CloudSim toolkit [9]
as the simulation platform. In the power model, we use the
standard price of the local power providers, 0.18675, SGD/kWh
to calculate the energy consumption cost. We assume that the
user has to pay 1.2 SGD per hour for using a VM instance.

Table III
PERFORMANCE EVALUATION FOR GOOGLE CLUSTER

Algortihm THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (Dollar) 706 708 708 710 710 688
#VM migrations 299352 262185 266706 233172 233172 3104

#Active host 82 72 73 59 59 194
Execution time (ms) 2887 4030 4000 3889 3923 1945

Though it is a bit costlier than reality, it does not harm the
analysis. Following the model mentioned in Section III-C, we
also assume that Cloud providers would pay back 16.7% and
33.3% of user’s money depending on whether the performance
degradation is less than or greater than 0.10%. In our set-up,
we have considered β = 70% as the overloading threshold of
the PMs and α = 30% for the minimum CPU usage threshold
by VMs during migration. The experiments are conducted on
a server with AMD Opteron(TM) Processor 6272 CPU @
2.1GHz and 128 GB memory. MMT algorithms are tested
using the code embedded with the CloudSim toolkit, whereas
Megh and MadVM are implemented and embedded in the
CloudSim framework using Java. For both of them, the value
of γ is 0.5. It let us allow 50:50 importance of both new and
old information. Temp0 and ε are set to 3 and 0.01 respectively
for the experiments in Section VI-C and VI-D.We explicate
such choice of parameters in Section VI-E. At each time-step,
we allow a maximum 2% of VMs to be migrated by Megh.
B. Dataset and Workload

PlanetLab Dataset: CloudSim contains workloads extracted
from the CoMoN project which was a monitoring infrastructure
for PlanetLab [10]. Each of the workloads consists of CPU
utilization data extracted at a regular interval of 5 minutes for
a span of 7 days. Figure 1(a) shows the statistical nature of
the workload and depicts inherent uncertainty in its dynamics.
The workloads are working on a set of 800 heterogeneous
physical machines (PMs). Half of these PMs are HP ProLiant
ML110 G4 servers and the other half are HP ProLiant ML110
G5 servers. The power consumption characteristics of these
two servers is obtained from SPECbenchmark and is shown
in Table I. Though they follow different energy consumption
models, each of them has a dual-core processor with 4GB
RAM and are provided with 1 Gbps network bandwidth. There
are a total of 1052 applications are running on this system.
Each of the applications are allocated on a VM with 1 vcpu,
0.5-2.5GB RAM, 0.5-2.5 MIPS and 100 Mbps bandwidth.

Google Cluster Dataset: The Google Cluster trace represents
dynamic tasks running on Google’s Hadoop MapReduce
clusters with 12,500 heterogeneous machines. It contains
continuous information of 29 days with event records and
sampled resource usage at an interval of 5 minutes. We select
500 machines as physical machines and the tasks scheduled
on those machines as virtual machine workloads. We create
2000 virtual machines with each running an individual task to
completion and switching to another. Unlike PlanetLab where
all of the workloads are together varying intensely, the Google

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Time (in 5 minutes)

P
e

r−
s
te

p
 C

o
s
t

(i
n

 D
o

lla
rs

)

THR−MMT

Megh

(a) Per-step cost (in SGD)

0 500 1000 1500 2000

10
2

10
3

10
4

10
5

Time (in 5 minutes)

#
V

M
 m

ig
ra

ti
o
n
s

THR−MMT

Megh

(b) Number of VM migrations

0 500 1000 1500 2000
0

50

100

150

200

250

Time (in 5 minutes)

#
A

c
ti
v
e
 h

o
s
ts

THR−MMT

Megh

(c) Number of active hosts

0 500 1000 1500 2000
500

1000

1500

2000

2500

3000

3500

4000

Time (in 5 minutes)

E
x
e
c
u
ti
o
n
 O

v
e
rh

e
a
d
 (

in
 m

il
li
s
e
c
o
n
d
s
)

THR−MMT

Megh

(d) Execution time
Figure 2. Performance of Megh, THR-MMT and LRR-MMT algorithms for PlanetLab dataset

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−0.1

10
0

P
e

r−
s
te

p
 C

o
s
t

(i
n

 D
o

lla
rs

)

Time (in 5 minutes)

THR−MMT

Megh

(a) Per-step cost (in SGD)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
2

10
3

10
4

10
5

10
6

Time (in 5 minutes)

#
V

M
 m

ig
ra

ti
o

n
s

THR−MMT

Megh

(b) Number of VM migrations

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

Time (in 5 minutes)

#
A

c
ti
v
e

 h
o

s
ts

Megh

THR−MMT

(c) Number of active hosts

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Time (in 5 minutes)

E
x
e

c
u

ti
o

n
 O

v
e

rh
e

a
d

 (
in

 m
ill

is
e

c
o

n
d

s
)

THR−MMT

Megh

(d) Execution time
Figure 3. Performance of Megh, THR-MMT and LRR-MMT algorithms for Google Cluster dataset.

Cluster trace has tasks with varying durations, starting times,
and obfuscated resource usages as shown in Figure 1(b).

PlanetLab is a huge geo-distributed computing platform
consisting of hundreds of sites and more than one thousand
nodes. It is hosted by organisations across the world. Users
can access the computing resources by deploying applications
to a subset of the nodes in the form of VMs. The trace is
collected from PlanetLab to track the CPU usage of each VM’s
workload. The result can represent the typical workload running
in a cloud environment. While the PlanetLab trace is mainly
related to academic computation tasks, the Google Cluster
trace records the events in Google’s cluster. Google’s trace can
show the characteristics of workloads running in the widely
available real cloud system. Evaluating our algorithm with the
traces from both the community and the industry validates
universality and robustness of our algorithm.
C. Comparative Performance Analysis

Megh vs MMT algorithms: Table II depicts the performance
of Megh and the MMT algorithms on a week-long trace of
PlanetLab. Table III summarizes the performance of aforemen-
tioned algorithms for the Google Cluster dataset. Total cost
of operation of the data center (in SGD) that is obtained by
adding the power consumption cost and SLA violation cost,
the number of VM migrations, average number of active hosts
and execution time (in milliseconds) of each iteration of the
algorithms are used as the performance measures of these
algorithms. As THR-MMT performs the best among the MMT
algorithms, we show a comparison of Megh with THR-MMT
in Figures 2 and 3.

We observe from Tables II and III after 7 days of operation
Megh reduces the expenditure by 14.25% for PlanetLab and
2.5% for Google Cluster with respect to that of THR-MMT.
Figures 2(a) and 3(a) show the per-step operation cost for
Megh not only converges faster than the contending algorithms
but also has less variance for both PlanetLab and Google.
Here, the per-step operation cost includes both the energy
consumption cost and the SLA violation cost in the 5 minutes
interval between two observations. Due to the learn-as-you-
go policy, Megh takes around 100 time-steps before reaching

the almost stable cost per-step. We do not observe such a
fast convergence for THR-MMT. Being a greedy heuristics,
THR-MMT still faces high variance and instability even after
initial convergence. It validates the robustness and stability of
Megh for optimal resource management for a diverse set of
workloads with respect to other heuristics.

In order to measure the performance of the system and
its QoS, we use the number of VM migration as another
metric. In our experiments, we consider that during the course
of migration the CPU capacity allocated to a VM on the
destination node is same as that of the present host. This means
that each migration may cause some SLA violation; therefore,
it is crucial to minimize the number of VM migrations. The
total number of VM migrations for THR-MMT is almost 140
times and 97 times more than that of Megh for PlanetLab and
Google respectively. Figures 2(b) and 3(b) report the evolution
of the cumulative number of VM migrations over the span of 7
days. As the total number of VM migrations up to an instance
for Megh is much less than that of the THR-MMT, it shows
at any instance Megh performs significantly better.

Decreasing the number of active hosts also decreases the
power consumption. Thus, the number of active hosts is
also used as a performance metric for resource management
algorithms. Though reducing the number of active hosts is the
approach taken by VM consolidation algorithms, it may prove
not to be a perfect metric. Because keeping a larger number
of hosts at very low utilization level can cause less power
consumption than keeping a few hosts at very high utilization
level. We can see this dilemma from Figures 2(c) and 3(c). For
PlanetLab, Megh keeps fewer hosts active than other MMT
algorithms, whereas for Google it keeps more active VMs
while incurring the least per-step cost for both datasets.

While the results above establish Megh’s effectiveness to
solve the live migration decisions with less expenditure and
better QoS, it has to fulfil another criterion to be a real-time
system: a small execution time. From Figures 2(d) and 3(d), we
observe Megh is running faster than that of the heuristic based
online algorithms. As shown in Tables II and III, Megh speeds
up the decision making by 1.41 and 1.48 times with respect

0 100 200 300 400 500 600 700 800
0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

Time (in 5 minutes)

P
e

r−
s
te

p
 C

o
s
t

(i
n

 D
o

lla
rs

)

MadVM

Megh

(a) Per-step cost (in SGD)

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

Time (in 5 minutes)

#
V

M
 m

ig
ra

ti
o

n
s

MadVM

Megh

(b) Number of VM migrations

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Time (in 5 minutes)

#
A

c
ti
v
e

 h
o

s
ts

MadVM

Megh

(c) Number of active hosts

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

Time (in 5 minutes)

E
x
e

c
u

ti
o

n
 O

v
e

rh
e

a
d

 (
in

 m
ill

is
e

c
o

n
d

s
)

MadVM

Megh

(d) Execution time
Figure 4. Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs extracted from PlanetLab trace.

0 100 200 300 400 500 600 700 800

0.067

0.068

0.069

0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

Time (in 5 minutes)

P
e

r−
s
te

p
 C

o
s
t

(i
n

 D
o

lla
rs

)

MadVM

Megh

(a) Per-step cost (in SGD)

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

Time (in 5 minutes)

#
V

M
 m

ig
ra

ti
o

n
s

MadVM

Megh

(b) Number of VM migrations

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

Time (in 5 minutes)

#
A

c
ti
v
e

 h
o

s
ts

MadVM

Megh

(c) Number of active hosts

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

Time (in 5 minutes)

E
x
e

c
u

ti
o

n
 O

v
e

rh
e

a
d

 (
in

 m
ill

is
e

c
o

n
d

s
)

MadVM

Megh

(d) Execution time
Figure 5. Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs extracted from Google Cluster trace.

to THR-MMT for PlanetLab and Google respectively. Since
migration time of a VM is in the order of a few seconds, speed
up of Megh with respect to the state-of-the-art can help the
system to make decisions and to execute them with significantly
less overhead or downtime to the process of migration. This,
in turn, improves the QoS of the system too. This empirically
proves the efficiency of Megh not only as an effective learning
algorithm but also as an eligible real-time resource management
system in Clouds.

Megh vs MadVM: MadVM fails to scale-up for the complete
PlanetLab or Google Cluster in our experimental facilities.
Thus, in order to compare the performance of our algorithm
with MadVM, we have chosen two random sets of 150
workloads running on 100 PMs for 3 days from PlanetLab and
Google Cluster traces. At the beginning, all these workloads
are allocated uniformly at random to each of the PMs, such
that there is no initial bias for the learning and the robustness
of both the algorithms can be tested. The 50:50 ratio of two
type of servers is still maintained.

From Figures 4(a) and 5(a), we see Megh incurs less cost
(4.3% and 8.8%) than MadVM at every time step. Figures 4(b)
and 5(b) show Megh causes significantly less (5.5 and 6.1
times) migrations than MadVM. Figures 4(c) and 5(c) depict
at every time step MadVM (average ∼58 and 34) keeps more
hosts active than our method (average ∼21 and 20). But the
main factor where MadVM stumbles is the execution time. It
takes on an average 4143ms and 4057ms to execute a single
iteration for a system of 100 PMs and 150 VMs, which is
almost the same as the migration time of a VM of 0.5 GB
RAM in the PlanetLab set-up. As the RL algorithms face
the curse of dimensionality and have a huge transition matrix
for bookkeeping at each time step, it makes RL algorithms
slower for a real-time system. Though authors of MadVM
tries to handle such scenario, Figures 4(d) and 5(d) depict
its inability to scale in real-time for large data centers. But
since Megh leverages the sparsity-based projection technique,
along with the specialised data structure, it takes the same

migration decision in approximately 7ms and 8ms respectively
for PlanetLab and Google systems. Thus, the experiments show
though Megh uses the RL approach for learning the workload
dynamics and to make migration decisions, it is significantly
more efficient and faster than the latest state-of-art RL algorithm
for dynamic VM management.
D. Scalability Analysis

Scalability is an important issue that an algorithm has to
achieve in order to perform for a large Cloud data center. Thus,
we show a comparative analysis of scalability of Megh and
THR-MMT in Figures 7(a) and 7(b). In order to conduct such
experiments, we have randomly chosen m and n number of
PMs and VMs from the PlanetLab data. Here, both m and
n can take values {100, 200, 300, 400, 500, 600, 700, 800}. For
each value of m and n, we have done 25 such experiments
with 25 randomly chosen set of PMs and VMs.

We observe from Figures 7(a) and 7(b) as the number of PMs
and VMs increase, the execution time per step increases for both
THR-MMT and Megh. With the increase of number of PMs
and VMs, the decision making algorithm has to choose among
larger set of options and has to face an increased uncertainty
in workload dynamics. Thus, this increase in execution time is
intuitive and natural. For Megh the rise in execution time
is much smaller than that of THR-MMT. This significant
difference in per-step execution time shows that Megh scales
up better than THR-MMT. It makes Megh more effective as a
real-time decision maker for large Clouds.

As MadVM is not scalable after 100∼150 PMs, we cannot
conduct such a comparative study with it.

E. Parameter Sensitivity

Temp0 and ε are used as parameters to tune the exploration-
exploitation trade-off of Megh. We test and analyze Megh’s
performance on different values of the parameters. We vary
Temp0 from 0.5 to 10 with a granularity of 0.5 while keeping
ε = 0.001. We run experiments on 30 distinct values of ε, which
belong to the interval

[
10−3, 100

]
and are at a logarithmic

(base 10) distance of 0.1. In this case, Temp0 is fixed to 1.

1 2 3 4 5 6 7 8 9 10

0.57

0.571

0.572

0.573

0.574

0.575

Temp
0

P
e
r−

s
te

p
 C

o
s
t
(i
n

 S
G

D
)

(a) Temp0-sensitivity

−3 −2 −1 0

0.57

0.571

0.572

0.573

0.574

0.575

log
10

ε

P
e
r−

s
te

p
 C

o
s
t
(i
n

 S
G

D
)

(b) ε-sensitivity
Figure 6. Sensitivity of per-step cost (in SGD) on Temp0 and ε.

For each value of Temp0 and ε, Megh is tested 25 times on
the PlanetLab dataset described in Section VI-B.

Figures 6(a) and 6(b) show boxplots of per-step cost (in
SGD) of Megh for each of the values of the parameter. These
boxplots depict the median and 90 percentile distribution of
the per-step cost. We observe that the median cost decreases
first as the Temp0 increases. But as it crosses Temp0 = 3,
the cost rises. Though for ε this change in per-step cost is a
bit sporadic, we see the variance and the median both reach a
local minimum at ε = 0.001.

Since use of Temp in Algorithm 2 let Megh explore more
rather than direct exploitation, increase in Temp0 would
increase the initial exploration. We see till Temp0 = 5
this increase in exploration is decreasing the median cost.
Because increased exploration stops agent from getting stuck
at local minima and take decisions more globally. But after that
point, we see the adverse effect of too much exploration. As
Temp0 increases after 5, the algorithm cannot benefit enough
from exploitation. Thus, the curve instantiate the exploration-
exploitation trade-off in case of Megh.
ε controls decay of Temp0 with time. As Temp0 decays, the

exploratory nature turns dormant and exploitative nature begins
to dominate. Thus, increase in ε would cause faster decay of
Temp. Though we expect to see similar nature as that of the
variation of Temp0 but here we see a bit of sporadic nature
where it is hard to detect a single tipping point for exploration-
exploitation trade-off. Hence, we make our choice empirically
from observation.

VII. CONCLUSION
In this paper, we address the problem of energy- and

performance-efficient resource management during live mi-
gration of VMs in a data center. Cloud providers leverage
live migration of VMs to reduce energy consumption and
allocate resources efficiently in data centers. Each migration
decision depends on three questions: when to move a VM,
which VM to move and where, i.e, to which PM to move it?
The uncertain, dynamic and heterogeneous nature of workloads
make these decision-makings difficult. Knowledge-based and
heuristics-based algorithms are commonly used to tackle this
problem. Knowledge-based algorithms are restricted to the
specifics of the targeted Cloud architectures and applications.
Heuristics-based algorithms, such as MMT algorithms, are
formulated to get rid of such limitations. They use constant or
adaptive thresholds to make corresponding decisions. Though
they are immune to the specificity of knowledge-base, they
suffer from high variance and poor convergence because of

100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

#PM

E
x
e
c
u

ti
o
n

 O
v
e

rh
e
a

d
 (

in
 m

ill
is

e
c
o

n
d
s
)

(a) THR-MMT

100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

PM

E
x
e
c
u

ti
o
n

 O
v
e

rh
e
a

d
 (

in
 m

ill
is

e
c
o

n
d
s
)

(b) Megh
Figure 7. Scalability analysis of THR-MMT (left) and Megh (right).

their greedy approach. Thus, we propose a reinforcement
learning approach. This methodology does not require any
prior knowledge. Instead, it learns the workload dynamics
and adapts with it. Our approach models the decision-making
issues as a Markov decision process. Motivated by this aspect,
several authors have proposed learning algorithms to solve
this problem. The curse of dimensionality restrains their usage
and applicability. Thus, they need an elaborate offline training
like Q-learning based algorithms. Even if they are online like
MadVM, they fail to be scalable in real-time because of the
costly operations to restrict the state space. Use of critic-only
approaches, like value iteration, also causes slow convergence.
We propose Megh from an actor-critic approach to overcome
this deficiency. In order to overcome the curse of dimensionality,
Megh projects the combinatorially explosive state-action space
to a polynomial dimensional space with sparse basis. Megh
updates the transition operator T incrementally without using
any prior knowledge of workload dynamics. Through this
update, Megh learns the uncertainty and dynamics of workload
as-it-goes. We leverage a data structure based on the sparsity
of the basis for fast and scalable real-time updates and learning.
Megh incurs the smallest cost and the least execution overhead
with respect to its contenders both on PlanetLab and Google
Cluster workloads. This validates Megh’s claim as a cost-
effective, time-efficient and robust algorithm. We also produce
a comparative scalability analysis of Megh and THR-MMT.
It demonstrates that Megh has better scalability than the
competing algorithm. We explicate our choices of parameters
controlling the exploration-exploitation trade-off through a
sensitivity analysis of Megh.

We have conducted additional experiments that show effects
of energy and SLA costs on the performance of Megh. We
did not present any detailed analysis of them due to space
constraints. We are currently investigating the opportunity to
take advantage of additional knowledge about the workload,
such as periodicity, and also to leverage knowledge of the
network topology like fat-trees [36]. Finally, following previous
works on energy efficient live migration of Clouds, we have
considered only CPU utilization data. We are confident that
our solution is able to seamlessly account for network and
memory sharing. We are studying the necessary extension to
the cost model to such settings in order to apply the Megh
strategy.

APPENDIX A
PROOF OF THEOREM 1

Proof. As we project the state-action space S × A to the
space X spanned by d dimensional basis vectors {φj}dj=0, we
reduce our search space from whole state-action space to a
subspace St. St is the set of all the states reachable through
one migration action from the present state st ∈ S. Suppose
St = {s1, s2, . . . , sd}. Note that we use superscripts to denote
the ordering of elements in St.

Thus, at each time-step t, we update the value functions of
the only reachable states in St. Let V = (V (s))Ts∈St and M
be a d× d matrix such that

Ψi,j = φπ(st)[j] ∀j = 1, . . . , d

where, si is the state reachable from st using action π(st). Let
θ be a |S|-dimension column vector such that Ψθ = V . If Ψ
is invertible, θ = Ψ−1V and Theorem 1 holds.

We claim that Ψ is invertible and its inverse is the matrix
Ω such that,

Ωi,j = (−1)|s
i|−|sj |Ψi,j .

In order to establish this construction, let us consider the i, jth

element of the matrix obtained by multiplying Ψ and Ω. If
si ∼ sj means state sj is reachable from state si through one
of the d migration actions, then

(ΩΨ)i,j =
∑

1≤k≤|St|

(−1)|s
i|−|sk|Ψi,kΨk,j

=
∑

sj∼sk∼si

(−1)|s
i|−|sk|.

Therefore (ΩΨ)i,j = 1 if and only if i = j. Thus, Ψ is
invertible and there exists a unique projection for given basis
vectors.

APPENDIX B
PROOF OF THEOREM 2

Proof. Let us denote the set of all possible value functions
V π obtained using policy π ∈ U. Without loss of generality,
we can assume V : S → R be a set of bounded, real-valued
functions. Then V is a Banach space with the norm ‖v‖ =
‖v‖∞ = sup |v(s)| for any v ∈ V.

Now, if we rephrase our problem of Equation 8 by including
the projection, we obtain,

argmin
π∈U

Ef

[∞∑
t=1

γt−1C(st−1, st)

]
(12)

such that, st ∈ St−1 i.e, st is reachable from st−1 through
one of the d migrations. Then Algorithm 1 is analogous to
LSPI over the reduced search space X . For this new problem
given by Equation (12), Algorithm 1 converges to a unique
cost-to-go function, say Ṽ ∈ V. We need to show that the
cost-to-go function estimated by Algorithm 1 is the optimal
one i.e, V ∗ = Ṽ .

Let us define the process of updating policy as a mapping
M : V→ V. Now using Equation 9, we can formulate M as

Mv(s) = min
s′∈Ss

Ef [C(s, s′) + γv(s′)] .

For a given state s, let

a∗s(v) = argmin
s′∈Ss

(C(s, s′) + γv(s′)) .

Let us assume that Mv(s) ≥ Mu(s) If s∗(v) is the state
obtained by following optimal policy π∗ from value function
v and state s, then

0 ≤Mv(s)−Mu(s)

= E [C(s, s∗(v)) + γv(s∗(v))]

− E [C(s, s∗(u)) + γu(s∗(u))]

≤ E [C(s, s∗(u)) + γv(s∗(u))]

− E [C(s, s∗(u)) + γu(s∗(u))]

= γE [v(s∗(u))− u(s∗(u))]

≤ γE [‖v − u‖] = γ‖v − u‖.

This result states that if Mv(s) ≥Mu(s), then

Mv(s)−Mu(s) ≤ γ|v(s)− u(s)|.

If we assume that Mv(s) ≤ Mu(s), the same reasoning
produces

Mv(s)−Mu(s) ≥ −γ|v(s)− u(s)|.

Thus we can conclude, |Mv(s)−Mu(s)| ≤ γ|v(s)−u(s)| for
all configuration s ∈ S. From the definition of our norm, we
can write

sup
s∈S
|Mv(s)−Mu(s)| = ‖Mv −Mu‖

≤ γ‖v − u‖.

This means for 0 ≤ γ < 1, M is a contraction mapping.
Following [27, Proposition 3.10.2], there exists a unique v∗

such that Mv∗ = v∗. Thus, for an arbitrary initial value function
v0, the sequence vn generated by vn+1 = Mvn converges
to v∗. By the property of convergence of LSPI [27], v∗ =
Ṽ . As the cost function C is a positive and monotonically
increasing function, the optimal cost-to-go function V ∗ also
satisfies MV ∗ = V ∗. Hence V ∗ = Ṽ and the property of
convergence of LSPI is preserved in Algorithm 1.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, 2005, pp. 273–286.

[3] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration for
virtual machines,” in Proceedings of the Annual Conference on USENIX
Annual Technical Conference, 2005, pp. 25–25.

[4] C. L. Belady, “In the data center, power and cooling costs more than
the it equipment it supports,” 2007.

[5] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour, Service level
agreements for cloud computing. Springer Science & Business Media,
2011.

[6] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurr. Comput.
: Pract. Exper., vol. 24, no. 13, pp. 1397–1420, Sep. 2012.

[7] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Gener. Comput. Syst., vol. 28, no. 5, pp. 755–768,
May 2012.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms,” Software:
Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[10] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring system
for planetlab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1,
pp. 65–74, 2006.

[11] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[12] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau,
“Dynamic virtual machine management via approximate markov decision
process,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, April 2016, pp. 1–9.

[13] R. Nathuji and K. Schwan, “Virtualpower: coordinated power man-
agement in virtualized enterprise systems,” in Proce. SOSP, 2007, pp.
265–278.

[14] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
gray-box strategies for virtual machine migration,” in Proc. NSDI, 2007,
pp. 11–13.

[15] Z. Á. Mann, “Allocation of virtual machines in cloud data centers: A
survey of problem models and optimization algorithms,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, p. 11, 2015.

[16] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in INFOCOM, 2011
Proceedings IEEE, 2011, pp. 71–75.

[17] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning
for the cloud using online bin packing,” Computers, IEEE Transactions
on, vol. 63, no. 11, pp. 2647–2660, 2014.

[18] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in INFOCOM,
2012 Proceedings IEEE, 2012, pp. 702–710.

[19] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[20] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement
learning,” in Parallel, Distributed and Network-Based Processing (PDP),
2014 22nd Euromicro International Conference on, Feb 2014, pp. 500–
507.

[21] S. S. Masoumzadeh and H. Hlavacs, “Integrating vm selection criteria
in distributed dynamic vm consolidation using fuzzy q-learning,” in
Proceedings of the 9th International Conference on Network and Service
Management (CNSM 2013), Oct 2013, pp. 332–338.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[23] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: A reinforcement
learning approach to virtual machines auto-configuration,” in Proceedings
of the 6th International Conference on Autonomic Computing, ser. ICAC
’09. New York, NY, USA: ACM, 2009, pp. 137–146.

[24] L. Baird et al., “Residual algorithms: Reinforcement learning with
function approximation,” in Proceedings of the twelfth international
conference on machine learning, 1995, pp. 30–37.

[25] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J.,
vol. 6, pp. 679–684, 1957.

[26] I. Grondman, L. Busoniu, G. Lopes, and R. Babuska, “A survey of actor-
critic reinforcement learning: Standard and natural policy gradients,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 42, no. 6, pp. 1291–1307, Nov 2012.

[27] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The
Journal of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[28] L. Minas and B. Ellison, Energy efficiency for information technology:
How to reduce power consumption in servers and data centers. Intel
Press, 2009.

[29] K. Huppler, K.-D. Lange, and J. Beckett, “Spec: Enabling efficiency
measurement,” in Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, 2012, pp. 257–258.

[30] K.-D. Lange, “Identifying shades of green: The specpower benchmarks,”
Computer, vol. 42, no. 3, pp. 95–97, 2009.

[31] R. Bellman and R. E. Kalaba, Dynamic programming and modern control
theory. Citeseer, 1965, vol. 81.

[32] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, 2007.

[33] K. E. Atkinson, An introduction to numerical analysis. John Wiley &
Sons, 2008.

[34] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users’ guide. Siam, 1999, vol. 9.

[35] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” Annals of
Mathematical Statistics, vol. 20, p. 317, 1949.

[36] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Trans. Comput., vol. 34, no. 10, pp. 892–901,
Oct. 1985.

