
T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l of C o m p u t i n g
Computing 1, 13 Computing Drive, Singapore 117417

TRA5/11

Scalable and Precise Refinement of Cache Timing
Analysis via Model Checking

Sudipta Chattopadhyay and Abhik Roychoudhury

May 2011

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the author,
at the address shown on the cover.

OOI Beng Chin
Dean of School

Scalable and Precise Refinement of Cache Timing Analysis via Model Checking

Sudipta Chattopadhyay Abhik Roychoudhury
National University of Singapore

{sudiptac,abhik}@comp.nus.edu.sg

Abstract—Hard real time systems require absolute guaran-
tees in their execution times. Subsequently, worst case execution
time (WCET) has increasingly become an important problem.
However, performance enhancing features of a processor (e.g.
cache) makes WCET analysis a difficult problem. In this paper,
we propose a novel approach of combining abstract interpreta-
tion and model checking for different varieties of cache analysis
ranging from single to multi-core platforms. Our modeling is
used to develop a precise yet scalable timing analysis method on
top of the Chronos WCET analysis tool. Experimental results
demonstrate that we can obtain significant improvement in
precision with reasonable analysis time overhead.

I. INTRODUCTION

Worst-case execution time (WCET) analysis of real-time
embedded software is an important problem. WCET of tasks
is used for system level schedulability analysis. WCET
estimation usually involves a program level path analysis
(to determine the infeasible paths in the program’s control
flow graph), micro-architectural modeling (to accurately
determine the maximum execution time of the basic blocks),
and a calculation phase (which combines the results of path
analysis and micro-architectural modeling).

Micro-architectural modeling usually involves systemati-
cally considering the timing effects of performance enhanc-
ing processor features such as pipeline and caches. Cache
analysis for real-time systems is usually accomplished by
abstract interpretation. This involves estimating the cache
behavior of a basic block B by considering the incoming
flows to B in the control flow graph. The memory accesses
of the incoming flows are analyzed to determine the cache
hits/misses for the memory accesses in B. Since programs
contain loops, such an analysis of memory accesses involves
an iterative fixed point computation via a method commonly
known as abstract interpretation. Abstract interpretation is
usually efficient, but the results are often not precise. This
is because the estimation of memory access behavior are
“joined” at the control flow merge points - resulting in an
over-approximation of potential cache misses returned by
the method.

In this paper, we develop a cache analysis framework
which improves the precision of abstract interpretation,
without appreciable loss of efficiency. We augment abstract
interpretation with a gradual and controlled use of model
checking, a path sensitive search based formal verification
method. Because of path sensitivity in its search - model

checking is known to be of high complexity. Hence abstract
interpretation based analysis cannot be naively replaced
with model checking for analysis of cache behavior. Recent
works [1] which have advocated combination of abstract
interpretation and model checking for multicore software
analysis - restrict the use of model checking to program
path level; cache analysis is still accomplished only by
abstract interpretation. Indeed almost all current state-of-the-
art WCET analyzers (such as Chronos [2], aiT [3]) perform
cache analysis via some variant of abstract interpretation.
Model checking is usually found to be not scalable for
micro-architectural analysis because of the huge search
space that needs to be traversed. The main novelty of
our work lies in integrating model checking with abstract
interpretation for timing analysis of cache behavior.

Our baseline analysis is abstract interpretation. Potential
cache conflicts identified by abstract interpretation are then
subjected to model checking. Our goal is to rule out “false”
cache conflicts which can occur only on infeasible program
paths. Such false conflicts are considered by abstract inter-
pretation since its join operator (which merges the estimates
from paths at control flow join points) conservatively consid-
ers all possible cache conflicts on any path in the control flow
graph. The path sensitive search in model checking naturally
rules out the infeasible program paths and the cache conflicts
incurred therein.

One appealing nature of our analysis method is that the re-
sults are always safe. We start with the results from abstract
interpretation and gradually refine the results with repeated
runs of model checking. Model checking is a property
verification method which takes in a system/program P and
a temporal logic property ϕ. (where ϕ is interpreted over
the execution traces1 of P). It checks whether all execution
traces of P satisfy ϕ. Given a potential conflicting pair of
memory blocks, we can model check a property that the
pair never conflicts in any execution trace of the program.
If indeed the conflict pair is introduced due to the over-
approximation in abstract interpretation - model checking
verifies that the conflict pair can never be realized. We can
then rule out the cache misses estimated due to the conflict
pair and tighten the estimated time bounds.

The property checked in a single run of model checking
thus involves certain cache conflicts identified by abstract

1We consider only Linear Time Temporal Logic properties here.

interpretation - model checking then verifies whether these
conflicts are indeed realizable. Thus, the scalability of our
framework is never in question. Given a time budget T , we
can first employ abstract interpretation and then employ as
many runs of model checking as we can within time T . Of
course, given more time, the results are more precise.

Contributions: In summary, this paper presents a
generic cache analysis framework based on abstract in-
terpretation and model checking. Thus, depending on the
time budget for analysis and the analysis precision required
- the framework can be tuned to analyze cache hit/miss
classifications for timing analysis. We further show that
the framework can be instantiated with a wide variety of
cache analyses - (i) analysis of cache behavior in a single
program, (ii) analysis of cache related preemption delay for
a multi-tasking system where the tasks are running on a
single core, and (iii) analysis of shared caches in multi-
cores. Our experimental results on the moderate to large
scale WCET benchmarks [4] show substantial improvement
in the precision of timing analysis results with limited
time overheads. This yields parameterizable cache analysis
framework for real-time systems which is generic, precise
and scalable.

II. RELATED WORK

Research on WCET analysis has been initiated decades
ago. Cache modeling has been an active topic of research
in this area. Initial works used Integer Linear Programming
(ILP) [5] for cache modeling. However, [5] faces scalability
problems in terms of analysis time. Subsequently, abstract
interpretation based cache analysis [6] has been proposed.
[6] has efficiently composed the cache modeling with ILP
based path analysis and the solution has also been adopted
in commercial tool chain [3]. [6] has also been extended
with level 2 cache analysis in single core by [7].

In last decade, there has also been an extensive amount of
research to bound cache related preemption delay (CRPD)
[8], [9], [10]. Recently, [11] has improved the CRPD
computed by previous approaches and [12] has eliminated
a potential unsafe CRPD computation for set-associative
caches.

With the advent of multi-core architectures, research on
multi-core specific hardware resources has also become very
popular. Analysis of shared cache [13], [14], [15] is one
such example. All the above mentioned cache analysis use
abstract interpretation for modeling purposes.

In [16], it is argued that model checking alone is not
suitable for WCET analysis due to the state space explosion
problem. On the other hand, [17] uses model checking
alone for cache and path analysis. However, [17] does not
employ the modeling of other micro-architectural features
(e.g. pipeline, branch predictor etc) and it is unclear whether
the employed technique would remain scalable in presence
of pipeline or other micro-architectural features.

In summary, abstract interpretation based approach is
scalable and easy to integrate with other micro-architectural
features. On the other hand, model checking can give the
most accurate result, but it is difficult to scale in terms of
analysis time. A recent approach [1] has therefore looked at
the combination of abstract interpretation and model check-
ing. However, [1] keeps the model checking on path analysis
level and uses abstract interpretation for cache analysis. In
this paper, we study the composition of model checking and
abstract interpretation for different cache analysis to design
a scalable and precise WCET analysis framework. Com-
pared to previous approaches, our framework has a major
advantage of easily being composed with the analysis of
other micro-architectural components (e.g. pipeline, branch
prediction).

III. BACKGROUND

WCET analysis of a single task: WCET analysis of a
single task is broadly composed of two different phases: i)
micro-architectural modeling and ii) path analysis. Micro-
architectural modeling analyzes the timing behaviour of dif-
ferent micro-architectural components (e.g. cache, pipeline,
branch predictor). Typically, micro-architectural modeling
works on the granularity of basic blocks. As an outcome of
micro-architectural modeling, we get the WCET of each ba-
sic block in the examined program. On the other hand, path
analysis computes the infeasible program paths. Our baseline
implementation for micro-architectural modeling and path
analysis is a separated one, as proposed in [6]. As a baseline,
we also use the widely adopted abstract interpretation based
cache analysis proposed in [6]. We implement must and may
cache analysis to classify memory blocks as all-hit (AH)
and all-miss (AM) respectively. must analysis is used along
with virtual inline and virtual unrolling (VIVU) as discussed
in [6]. In VIVU approach, each loop is unrolled once to
distinguish cold cache misses in first iteration of the loop.
If a memory block is categorized as AH, it means that the
memory block is always in cache whenever it is accessed. On
the other hand, if a memory block is categorized as AM, it
means that the memory block is never in the cache whenever
it is accessed. If a memory block cannot be classified as
either of two (AH or AM), it is considered unclassified
(NC). Cache analysis outcome is used for computing the
WCET of each basic block. Finally, longest path search
in a program is formulated as an integer linear program
(ILP). The formulated ILP uses the basic block WCETs and
structural constraints imposed by program control flow graph
(CFG). The solution of the formulated ILP returns the whole
program WCET.

Inter-task cache conflict analysis: Inter-task cache con-
flict analysis is required to find an upper bound on cache
misses due to preemption. The bound on cache misses (or
additional clock cycles) due to preemption is called cache
related preemption delay (CRPD). CRPD analysis revolves

2

around the notion of two basic concepts: useful cache blocks
(UCB) and evicted cache blocks (ECB). UCBs are computed
by analyzing the preempted task and ECBs are computed
by analyzing the preempting task. A UCB is a block that
may be cached and may be used later, resulting in a cache
hit. The number of UCBs pose a bound on CRPD. On
the other hand, the preempting task can cause additional
cache misses in a cache set only if it uses the same cache
set during its execution. For a particular cache set, the set
of cache blocks used by the preempting task during its
execution is known as ECB for the corresponding cache set.
Recently, [11] has improved the previous approaches [8],
[9] by reducing the number of UCBs to consider for CRPD
computation. Another recent work ([12]) has improved and
corrected the CRPD analysis for set-associative caches. Our
implementation of CRPD analysis includes the correction
for set-associative caches as proposed in [12] and also
includes the improvement suggested by [11]. Therefore,
our basic implementation is the best known and correct
implementation so far. For a detailed description of CRPD
analysis, readers are referred to [8].

Inter-core cache conflict analysis: Inter-core cache
conflict analysis computes the conflicts generated in shared
cache by a task running on a different core. Till now, only a
few solutions have been proposed for shared cache analysis
[13], [15], [14]. However, all of them suffer from over-
estimating the cache conflicts generated by the task running
on a different core. We use our former work on shared cache
analysis [13] which employs a separate shared cache conflict
analysis phase. Shared cache conflict analysis changes the
categorization of a memory block m from all-hit (AH) to
unclassified (NC). The categorization is changed by comput-
ing the number of unique conflicting cache accesses from
other core and checking whether the number of conflicts can
potentially replace m. More specifically, categorization of m
is changed from AH to NC if the following condition holds:

N − age(m) < |Mc(m)| (1)

where |Mc(m)| represents the number conflicting memory
blocks from other core which may potentially access the
same L2 cache set as m. N represents the associativity of
shared L2 cache and age(m) represents the age of memory
block m in shared L2 cache disregarding the conflicts from
other core. Therefore, N − age(m) specifically represents
the amount of shift that memory block m can tolerate before
being replaced from the cache. We call the term N−age(m)
as residual age of m.

IV. ANALYSIS FRAMEWORK

A. General framework

Figure 1 demonstrates the general analysis framework.
Our goal is to refine different types of abstract interpretation
(AI) based cache analysis through model checking (MC).
Cold cache misses are unavoidable and AI based cache

failure

Executable

Cache

WCET
WCET
analysis

Conflicts in
cache

Modify
conflicts Refinement

success

Other Micro−architectural
modeling (pipeline, branch

predictor etc)

Modify source
to refine
conflicts

Refinement

Refinement
through

model checker

timeout

analysis by AI

All refinements
done

Figure 1. General framework of our WCET analysis which combines
abstract interpretation and model checking

analysis can accurately predict the set of cold cache misses.
However, AI based cache analysis suffers from accurately
predicting the conflict misses in a cache. On the other hand,
conflicts in a particular cache set may come from different
sources. We focus on all three types of conflicts which may
arise in a cache: first, intra-task cache conflicts which is
created by different memory blocks accessed by a particular
task and mapping into the same cache set. Secondly, inter-
task cache conflicts which is created when a high priority
task preempts a low priority task. Finally, inter-core cache
conflicts which is generated in the shared cache by a task
running on a different core. Figure 3 pictorially represents
all forms of above mentioned cache conflicts.

Even though the basic goal of our framework is cache
conflict refinement, the notion of cache conflict may vary
depending on the outcome of AI based cache analysis.
For example, in inter-task cache conflict refinement, initial
CRPD analysis produces a set of ECBs, which can be
considered the set of cache conflicts. On the other hand,
during intra-task and inter-core cache conflict refinement,
we get the cache hit miss classification (AH, AM or NC) of
each memory block. Since our goal is to improve timing
precision, we concentrate on unclassified (NC) memory
blocks. By refining one NC categorized memory block into
AH, we may reduce more than one cache conflict pairs,
which may in turn result in an improvement of WCET.

In Figure 1, the dotted boxed portion has different imple-
mentations for refining different types of cache conflicts (i.e.
intra-task, inter-task and inter-core). The refinement of cache
conflicts is iteratively performed through model checking on
a modified source program. The model checker is invoked
only for improving the timing analysis result (WCET or
CRPD). Therefore, the model checker is invoked only for
a subset of cache accesses which AI has failed to ana-
lyze accurately. Consequently, the amount of time required
for refinement could be tolerated. The iterative refinement
through model checking eliminates several infeasible paths
from the candidate program, resulting in the removal of
several unnecessary conflicts generated in a particular cache
set. The iterative refinement is continued as long as the
time budget permits or all possible refinements have been

3

void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

x−−;
} else {

if (z == −2) {

} else {

i++;

T

m1−m3−m5 is an infeasible path

T NT

m0

m1 m2

NT
m3

m4

(a) C−code with infeasible path (b) CFG without the backedge

x++;

assert(C_1 <= 0);

T = Taken branch
NT = Not Taken branch

int i = 0;

int C_1 = 0;

while (i < 100) {
if (z >= 0) {

x++;

} else {
x−−;

if (z == −2) {

} else {
x++;

i++;

flag_m5 = 0;
C_1 = 0;

if (flag_m5 == 0) {
flag_m5 = 1;
C_1++;

int flag_m5 = 0;

void f(int z) {

x−−;

(c) Modified source provided to MC
to refine intra−task cache conflicts

m’

m’

m’

VIVU

cache set as m1 and m5 in shared L2 cache
m’ is the only block mapping to same

m’ is all−hit with residual age 1 in a 2−way
associative shared L2 cache

(d) A task running in a different core

int i = 0;
void f(int z) {

if (z >= 0) {
while (i < 100) {

int flag_m5 = 0;
int C_1 = 0;

C_1++;

x++;

x−−;

if (z == −2) {
if (flag_m5 == 0) {

flag_m5 = 1;
C_1++;

x−−;

} else {

} else {
x++;

i++;

assert(C_1 <= 1);

flag_m1 = 1;
if (flag_m1 == 0) {

int flag_m1 = 0;

to refine inter−task and inter−core cache conflicts
(e) Modified source provided to MC

}

}

}
}

}

}

}

}
}

}

}

}

}

}

}

x−−;

I1

P1

I2

I1

P2

m5 m6

Figure 2. Refinement of various cache conflicts

performed by MC. There are two important advantages of
our framework: first, the iterative MC refinement can be
terminated at any point if the time budget exceeds. The
resulting cache conflicts, after a partial refinement, can safely
be used for estimating the WCET or CRPD. Secondly, our
framework can be composed with other micro-architectural
features (e.g. pipeline, branch prediction) and thereby, not
affecting the flexibility of AI-based cache analysis.

A general code transformation framework: Any code
transformation due to various cache conflict refinement can
be generally represented by a quintuple < L, C,Pl,Pc, I >
as follows:

• L : Set of conflicting memory blocks in the cache set
for which the refinement is being made.

• C : The property to be checked by the model checker.
The property is placed in form of an “assertion” clause,
which validates C for all possible execution traces.

• Pl : Set of positions in source code where the conflict
count would be incremented. These are the set of
positions where some memory block in L might be
accessed.

• Pc : Position in source code where the property C
would be placed.

• I : Set of positions in the source code to reset conflict
count.

Any refinement corresponds to a specific cache set and
therefore, conflicts are defined for a specific cache set in
each transformation. Therefore, computation of L and Pl

depends only on the cache set for which the conflicts are
being refined. On the other hand, C, Pc and I depends on
the type of cache conflict (i.e. intra-task, inter-task or inter-
core) being refined.

In subsequent sections, we shall describe the instantiation
of the framework in Figure 1 for refining different versions
of cache conflicts (as shown in Figure 3). We shall also show
how C, Pc and I are configured depending on the type of
cache conflict being refined.

Core 1 Core 1
Higher
priority

task

Lower
priority

task

L1 cacheL1 cache

Task

Core 1

L1 cache

Core 2

TaskTask

Shared L2 cache

(c) inter−core cache conflicts

(a) intra−task cache conflicts (b) inter−task cache conflicts

L1 cache

Figure 3. Variants of cache conflicts

V. REFINEMENT OF INTRA-TASK CACHE CONFLICTS

In this section we describe the refinement of cache con-
flicts shown in Figure 3(a). Recall that the memory blocks
are classified as AH (all-hit), AM (all-miss) or NC (unclas-
sified) by [6]. AH and AM are guaranteed categorizations by
AI based cache analysis. Therefore, AH and AM categorized
memory blocks do not have any scope for refinement. On the
other hand, AI based cache analysis fails to give guaranteed
information (in this case cache hit or cache miss) for NC
categorized memory blocks. Consequently, we use the model
checker to refine the set of NC categorized memory blocks.

Figure 4 demonstrates the instantiation of our general
framework for reducing the over-estimation in WCET analy-
sis. As shown in Figure 4, we only target the NC categorized
memory blocks inside some loop (eliminating all NC cate-
gorized memory blocks that are accessed only once). There-
fore, we concentrate only on a few memory blocks whose

4

NC categorized
memory blocks
inside some loop

Refinement

by model checker

categorization

Modify hit-miss

Refinement success
Timeout

Refinement failure

< L, C,Pl,Pc, I >

All refinements
done

Figure 4. Refinement of intra-task conflict analysis

successful refinement may lead to a reasonable WCET im-
provement. For each of the NC categorized memory blocks
under consideration, we call our general code transformation
framework (as shown in Figure 4). Let us assume we want
to refine the categorization of a particular memory reference
m mapping to a cache set i. m is the most recently used
cache block immediately after it is accessed. Therefore, we
would like to check whether m could be evicted from the
cache between any two of its consecutive references. Let
us assume Ci represents the number of unique conflicts in
cache set i and N is the associativity of the cache. For
a successful refinement (m being a cache hit), Ci must
be less than or equal to N − 1 each time m is accessed.
Therefore, in our general transformation framework, C is
of form Ci ≤ N − 1. More over, Pc is the program point
immediately before the reference for which the refinement
is being made. As said before, m is the most recently used
cache block immediately after it is accessed. Therefore,
the conflicts are reset immediately after m is accessed.
Consequently, I is the program point immediately after the
reference for which the refinement is being made.

We demonstrate our technique through an example in
Figure 2(a). Parameter z can be considered as a user input.
Corresponding control flow graph (CFG) of the loop body
and the accessed memory blocks are shown in Figure 2(b).
For illustration purposes, assume a direct-mapped L1 cache
where m1 and m5 are mapped to the same cache set and
rest of the memory blocks do not conflict in L1 cache with
m1 or m5. A correct AI-based cache analysis will classify
both m1 and m5 accesses as NC. Figure 2(c) shows the
transformation to refine the NC categorization of m1. Since
the cache is direct mapped, the refinement of m1 is possible
only if there is no other conflicting cache accesses between
any two consecutive accesses of m1. Variable C 1 serves
the purpose of counting the number of conflicts. Since m5
is the only conflicting memory block, C 1 is incremented
before the access of m5. Increment of C 1 is guarded with
condition (flag m5 serves the purpose of guard), so that
we count only unique memory block accesses. The above
transformation of code is fully automated and we pass the
transformed code to a software model checker. As m1-m3-
m5 is an infeasible path (due to the conflicting conditions
z ≥ 0 and z = −2), a software model checker satisfies
the assertion clause “P1” in Figure 2(c). Consequently, the

categorization of m1 can be upgraded to all-hit except one
(one miss accounts for cold cache miss).

VI. REFINEMENT OF INTER-TASK CACHE CONFLICTS

Here we show the refinement of inter-task cache conflicts
(as shown in Figure 2(b)) and thereby reduce the over-
estimation introduced by CRPD analysis. A major source
of over-estimation in CRPD analysis comes from the com-
putation of evicted cache blocks (ECB). ECB denotes the
set of cache blocks possibly touched by the preempting
task. ECB computation is path insensitive and therefore,
it does not account the infeasible paths in the preempting
task. As before, we use a model checker for refining the
number of ECBs by eliminating infeasible paths found in
the preempting task.

Inter task cache
conflicts

(ECBs)
Reevaluate CRPD

[ECB(i)≥1]

< L, C,Pl,Pc, I >

Refinement by

model checker

Modify ECB(i)

Refinement failure

Refinement success
Timeout

For all cache set i

All refinements
done

Figure 5. Refinement of inter-task conflict analysis

The refinement of ECBs can be represented in Figure 5.
Let us assume ECB(i) represents the number of ECBs com-
puted at cache set i and Ci represents the number of cache
blocks accessed by the preempting task at cache set i. The
refinement of ECBs are performed in an iterative manner. In
each iteration, we refine ECB(i) with an immediate better
value. More precisely, if ECB(i) = N , we use the model
checker to verify whether Ci ≤ N − 1. The property also
explains the entry C in our code transformation framework.
For a successful refinement, ECB(i) is updated with new
value N − 1. After all cache sets are checked in one pass,
we reevaluate the CRPD. If the CRPD value is desirable, the
refinement can safely be terminated. Finally, we check the
conflicts generated by the entire preempting task. Therefore,
the conflicts are initialized only once, at the beginning of the
preempting task (explains I) and the property C is placed
at the end of preempting task (explains Pc).

We again demonstrate the idea using the example in
Figure 2(a). Suppose, the task in Figure 2(a) is a high priority
task which may potentially preempt some low priority task.
For sake of illustration, assume a 2-way set associative
cache where m1 and m5 map to the same cache set.
Therefore, the ECB computation in literatures assumes that
both m1 and m5 conflict in cache with the low priority

5

task. The transformation of code is shown in Figure 2(e).
C 1 denotes the number of unique memory block accesses
in the corresponding cache set (in which m1 and m5 map)
by the preempting task. flag m1 and flag m5 are used
as guards, so that C 1 counts only unique memory blocks.
Due to presence of m1 and m5, number of ECBs at the
corresponding cache set is two. To refine the number of
ECBs, we check whether the value of C 1 is less than or
equal to 1. When the modified source is passed to a software
model checker, it can find out the infeasible path m1-m3-m5
and satisfy the verification criteria (i.e. C 1 ≤ 1).

VII. REFINEMENT OF INTER-CORE CACHE CONFLICTS

Finally, we describe the refinement of inter-core conflicts
generated in a shared cache (as shown in Figure 3(c)).
Recall from Equation 1 that the precision of shared L2 cache
analysis largely depends on the accuracy of estimating the
term |Mc(m)|. The model checking pass in our framework
refines the set Mc(m) by exploiting infeasible paths in the
conflicting task.

Memory blocks inside
a loop that are changed
from AH to NC in shared
cache conflict analysis

Modify categorization

from NC to AH

Refinement failure

All refinements
done

Timeout

Refinement
success

model checker

Refinement by
< L, C,Pl,Pc, I >

Figure 6. Refinement of shared cache conflict analysis

Figure 6 demonstrates the instantiation of our general
framework for inter-core conflict refinement. We only target
the memory blocks whose categorizations are changed from
AH to NC in a shared cache conflict analysis phase. Assume
m is such a memory block mapped to shared L2 cache set
i. Further assume a conflicting task running on a different
core uses Ci number of cache blocks in shared L2 cache
set i. Therefore, if we can prove that Ci is less than or
equal to the residual age of m, we can be sure that m
cannot be evicted from the shared L2 cache due to inter-core
conflicts. Consequently, categorization of m can be reverted
back to AH. In our transformation framework, we formulate
C as a property of form Ci ≤ residual age(m). On the
other hand, we check the conflicts generated by an entire
task running on a different core. Therefore, the conflicts
are initialized only once, at the beginning of the conflicting
task (explains I) and the property C is placed at the end of
conflicting task (explains Pc).

Coming back to the example in Figure 2(a), assume that
m1 and m5 maps to the same cache set of a 2-way set
associative L2 cache. Further assume that we are trying to
refine the shared cache conflict analysis of a task shown in

Figure 2(d), when it is run parallely on a different core with
the task in Figure 2(a). Finally assume, m′ is an all-hit (AH)
in L2 cache with residual age one but an all-miss (AM) or
unclassified (NC) in L1 cache from the second iteration of
the loop. Previous analysis will compute |Mc(m

′)| as 2 (due
to m1 and m5 in the conflicting task). Since the residual age
of m′ is one, the categorization of m′ will be changed to NC,
leading to unnecessary conflict misses. However, as before,
if we modify the source as in Figure 2(e) and pass it to the
model checker, the model checker will satisfy the assertion.
Consequently, we shall be able to derive that number of
conflicting blocks from other core with m′ never exceeds
the residual age of m′. Therefore, the categorization of m′

is kept all-hit (AH) from the second iteration of the loop.
Although we show the transformation for a two core

system, our framework does not have the strict limitation
of working only for two cores. The model checker can
handle only one task at one invocation. Therefore, to refine
conflicts from X different tasks {t1, t2, . . . , tX} running on
X different cores, we first employ an additional compose
phase in transformation. The compose phase sequentially
composes {t1, t2, . . . , tX} into a single task T . Our code
transformation technique can be applied to T in exactly
same manner as described above to refine conflicts from
{t1, t2, . . . , tX}.

VIII. OPTIMIZATIONS AND EXTENSIONS

Reducing number of calls to model checker: To re-
duce the number of calls to model checker, we cache the
verification results. It could be observed that during inter-
task and inter-core cache conflict refinement, Pc does not
depend on the cache set for which refinement is being made
(property C is always put at the end of conflicting task).
Therefore, we store the result returned by the model checker
as a triple (set, resultmc, conflicts). The triple has the
following significance: i) set : Cache set for which the
refinement is being made. ii) resultmc : Returned result by
the model checker. Assume resultmc is zero for a successful
verification and nonzero otherwise. iii) conflicts : Number
of conflicts in the assertion clause (C). In Figure 2(e), we
store (1, 0, 1) after the successful refinement (assuming m1
and m5 map to cache set 1). Assume any other assertion of
form Cset′ ≤ N is needed to be checked, where set′ is the
cache set for which the conflict is being refined. We search
the cached results of form (set, resultmc, conflicts) and
take an action as follows:
• set = set′∧resultmc 6= 0∧N ≥ conflicts: Assertion

failure is returned. If the refinement previously failed
for a less number of conflicts, it will definitely fail for
more conflicts.

• set = set′∧resultmc = 0∧N ≤ conflicts: Assertion
success is returned. If the refinement was previously
satisfied for more number of conflicts, it must be
satisfied for less number of conflicts.

6

If none of the entries satisfy the above two conditions, a
new call to the model checker is made. Depending on the
outcome, the new result is cached accordingly for future use.

Hierarchical refinement: Till now, we have only dis-
cussed checking the conflicts generated in a particular cache
set. However, cache conflicts generated in different cache
sets can be correlated. Consider the program and its corre-
sponding CFG shown in Figure 7. y and z are input variables

int i = 0;
while (i < 100) {

x++;

x−−;

void f(int y, int z) {

if (z >= 0)

else

if (y == −2)
x−−;

else
x++;

i++;
}

}

(a) C−code with infeasible path

T

T NT

m0

m1 m2

NT

m5m6

m3

m4

(b) CFG without the backedge

m1 and m4 map to the same cache set
m2 and m3 map to the same cache set

T = Taken branch NT = Not Taken branch

Figure 7. Correlated cache conflicts

whose values are unknown. Assume a direct mapped cache
and further assume that m1 (m2) and m4 (m3) are mapped
to same cache set i (j). However, careful examination reveals
that either m1 or m2 (but not both) can be accessed in one
invocation of the task. Therefore, either m1 will conflict
with m4 or m2 will conflict with m3 but both conflicts are
impossible to happen in a single invocation. Any AI-based
cache analysis will conclude both m4 and m3 accesses as
NC. According to the previous reasoning, we know that only
one can be NC but not both. Therefore, we can modify the
source code to check a correlated property. Assuming Ci

and Cj denote the conflicts in set i and set j respectively,
the correlated property should be of the form as follows:

Ci ≥ N ⇒ Cj ≤ N − 1 ∧ Cj ≥ N ⇒ Ci ≤ N − 1 (2)

where N is the associativity of the cache. The above
property can be called a second order conflict correlation.
The idea of conflict correlation can be generalized with
n correlated properties. However, increasing the value of
n also increases the time complexity of the analysis with
less benefit. We plan to study the scalability of hierarchical
refinement in future.

IX. IMPLEMENTATION

We have used the chronos timing analysis tool [2] in
which we have already integrated the AI based cache
analysis proposed in [6] (for single core) and [13] (for
multiple cores). Chronos already employs detailed pipeline
modeling (superscalar, out-of-order etc) and modeling of
branch prediction. We have also integrated the recently

CBMC

SATISFIED

VIOLATED

Executable

Path analysis CFG

L2 cache analysis

CHMC
in L2 cache

Executable
running

on a different
core

CRPD analysis

CHMC
in L1 cache

Inter−core Modified
source

code

Modified
source

code

High priority
Executable

ECB
Modified
source

code

addr2line

addr2lineL1 cache analysis

conflict analysis
Shared cache

conflict set
addr2line

Figure 8. Implementation framework

proposed CRPD analysis ([12] and [11]) as discussed in
previous section into chronos. For model checking purposes,
we use C bounded model checker (CBMC) [18]. CBMC
implements bounded model checking for any C program.
In the verification process, CBMC unwinds loop iterations.
User can specify the unwinding depth of each loop in the
program. CBMC unwinds the loop to the certain depth if
a user specified loop bound is detected. If the loop bound
specified by the user is not sufficient, CBMC generates
an unwind assertion violation. On the other hand, if user
has not specified any bound for a loop, CBMC tries to
determine the loop bound automatically. In most of our
experiments, CBMC was able to determine the loop bound
automatically. For the cases where CBMC failed to deter-
mine the loop bound, we provided sufficient loop bound as
input, so that no unwinding assertion is violated. Figure 8
gives an overall picture of our implementation framework.
The figure demonstrates one refinement for each type of
conflicts. Chronos employes AI based cache analysis directly
on the executable. We use a utility addr2line which converts
an instruction address to corresponding source code line
number. The information generated by addr2line is used to
generate the transformed code, which is finally passed to
CBMC. CBMC either successfully verifies the property or
generates a counter example. For a successful verification,
we modify the conflict information.

X. EXPERIMENTAL EVALUATION

We have chosen benchmarks from [4] which are generally
used for timing analysis. For evaluation of our framework,
we need a set of tasks which potentially exhibit many paths.
Table I demonstrates a set of benchmarks having multiple
paths. Let us call the set of tasks in Table I as conflicting task
set. Each task in the conflicting task set serves the purpose
of the task used in Figure 2(a). Therefore, model checker
refinement pass is used on the tasks from conflicting task
set. We use a set of randomly selected benchmarks from
[4] as shown in Table II during inter-task and inter-core
conflict refinement. We call the tasks in Table II as standard
task set. During inter-task and inter-core conflict refinement,

7

Task Description code size (bytes)
qurt Root computation of quadratic equations 4898

statemate Automatically generated code 52618
from Real-time-Code generator STARC

compress Data compression program 13411
nsichneu Simulate an extended petri-net 118351

Table I
CONFLICTING TASK SET

Task Description code size (bytes)
cnt Counts non-negative numbers in a matrix 2880
fir Finite impulse response filter 11965

fdct Fast discrete cosign transform 8863
jfdcint discrete cosign transform on 8× 8 block 16028

edn signal processing application 10563
ndes complex embedded code 7345

Table II
STANDARD TASK SET

we refine the conflicts generated by conflicting task set on
the standard task set. We report our experiences for each
possible combinations of standard and conflicting task set.

We use the following terminology in presenting the exper-
imental data: i) WCETbase : WCET before any refinement
by model checker. ii) WCETrefined : WCET after refine-
ment by model checker. iii) CRPDbase : CRPD before any
refinement by model checker. iv) CRPDrefined : CRPD
after refinement by model checker. WCET improvement
is computed as WCETbase−WCETrefined

WCETbase
× 100%. CRPD

improvement is computed similarly.
Our framework uses the usual 5-stage pipeline (IF-ID-

EX-MEM-WB) implemented by chronos when predicting
the WCET value. The experimental data are taken for an
inorder pipeline. However, the data can also be obtained for
an out-of-order pipeline in exactly same manner. We fix the
L2 cache miss latency as 6 cycles and memory latency as 30
cycles for all the experiments. For the experiments which do
not have an L2 cache (e.g. inter-task and intra-task conflict
refinement), we simply take the L1 cache miss penalty as 36
cycles. All reported experiments have been performed in an
Intel core-2 duo machine having 2 GB of RAM and running
ubuntu 10.10 operating systems.

Reducing intra-task cache conflicts: Clearly, our re-
finement depends both on the choice of conflicting task set
and cache size. We choose a 4-way associative, 8 KB L1
cache with 32 bytes of block size. Applying [6] on qurt
and compress does not leave any NC categorized memory
blocks inside loop. Therefore, our refinement pass using
CBMC did not have any additional effect in improving
the WCET for qurt and compress. On the other hand,
statemate and nsichneu contains very large loops (in terms
of code size) as well as they contain multiple paths inside
a loop. Consequently, AI based cache analysis generates a
large number of NC categorized memory blocks. The result
obtained for statemate and nsichneu is presented in Table
III. As shown in Table III, for both statemate and nsichneu,
we are able to refine many of the NC categorized memory
blocks (e.g. 68 out of 100 calls return success when exper-
imenting with statemate). We show the refinement process

for a maximum of 100 model checker calls. Nevertheless,
if time budget permits, the refinement process can be run
longer and thereby provide more opportunities to improve
the WCET. Above result demonstrates the potential of our
approach even for improving the most fundamental cache
conflict analysis through AI.

Reducing inter-task cache conflicts: We present the
result of inter-task conflict refinement in Table IV. CRPD
reported in Table IV (CRPDbase and CRPDrefined) de-
notes the cache related preemption delay when a low priority
task from standard task set is preempted by a high priority
task from conflicting task set. As before, we choose a 4-way
associative, 8 KB L1 cache with 32 bytes block size. Due
to a relatively small number of ECBs, CRPD computed in
presence of qurt is negligible. Therefore, the model checker
refinement pass does not give us any additional reduction in
CRPD. On the other hand, we are able to reduce the number
of ECBs as well as the CRPD when compress, statemate and
nsichneu are used as high priority tasks. CRPD improvement
is significant, with average improvement being more than
80%. Note that we use a set associative cache. Therefore,
conflicts generated from high priority tasks may just age
the used cache blocks in the low priority tasks (instead of
completely evicting the used cache blocks by the low priority
task). Consequently, for (cnt,compress) and (fir,compress)
pair, we are able to completely eliminate the CRPD.

Unlike the intra-task conflict refinement, results reported
in Table IV run the refinement process till end (i.e. unless
all possible refinements have been checked).

Reducing inter-core cache conflicts: Finally, we present
the result of inter-core cache conflict refinement in Table V.
In one core, we run a task from the standard task set (in Table
II) and in another core, we run a task from the conflicting
task set (in Table I). Reported WCETs represent the WCETs
of tasks from the standard task set. For experiments reported
in Table V, we need the analysis of both L1 and L2 cache.
We fixed the L1 cache as a direct-mapped, 256 bytes with a
block size of 32 bytes. L1 cache is taken relatively small so
that we are able to generate reasonable number of conflicts
in the shared L2 cache. For two relatively small tasks in the
conflicting task set (i.e. qurt and compress), we take a 2-
way set associative, 2 KB shared L2 cache and for the other
two bigger tasks (i.e. statemate and nsichneu), we take a
bigger 4-way associative, 8 KB shared L2 cache, both having
a cache block size of 32 bytes. As expected, we are able
to significantly reduce the standard task WCET by refining
the inter-core cache conflicts (maximum improvement upto
57%). Refinement of tasks with potentially more infeasible
paths (i.e. statemate, nsichneu and compress) result in more
WCET improvement compared to the rest (i.e. qurt).

Number of CBMC calls is tolerable (maximum number
of calls being only 29). Consequently, except for the two
special cases using qurt (i.e. (qurt,jfdcint) and (qurt,edn)),
all our experiments complete within two minutes.

8

program NC inside loop NC refined WCETbase WCETrefined Improvement(%) MC steps time(secs)
(in cycles) (in cycles)

statemate 350 68 19188 14834 22.7% 100 395
nsichneu 697 98 91000 84174 7.5% 100 558

Table III
REFINEMENT OF INTRA-TASK CACHE CONFLICTS. We use a 4-way associative, 8 KB cache with 32 bytes block size.

program (low+high) ECB before ECB after refinement CRPDbase CRPDrefined Improvement(%) time (secs) MC calls
(in cycles) (in cycles)

cnt + statemate 128 105 1260 684 45.7% 145.69 27
fir + statemate 128 112 972 72 92.6% 123.73 19

fdct + statemate 128 103 1152 396 65.6% 181.6 32
jfdcint + statemate 128 103 1224 648 47.1% 182.8 32

edn + statemate 128 103 4464 2664 40.3% 187.34 32
ndes + statemate 128 103 2844 720 74.7% 193.5 32

cnt + nsichneu 512 474 1152 396 65.6% 390.58 52
fir + nsichneu 512 488 828 72 91.3% 304.96 34

fdct + nsichneu 512 397 612 36 94.1% 465.50 52
jfdcint + nsichneu 512 469 792 72 90.9% 554.26 46

edn + nsichneu 512 451 3492 144 95.9% 769.41 64
ndes + nsichneu 512 454 5328 108 98% 743.84 61

cnt + compress 107 82 432 0 100% 139.84 27
fir + compress 107 58 324 0 100% 137.51 19

fdct + compress 107 97 396 72 81.8% 144.35 32
jfdcint + compress 107 97 648 72 88.9% 144.58 32

edn + compress 107 97 2448 108 95.6% 148.29 32
ndes + compress 107 97 900 36 96% 152.25 32

Table IV
REFINEMENT OF INTER-TASK CACHE CONFLICTS. We use a 4-way associative, 8 KB cache with 32 bytes block size.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100
 200

 300
 400

 500

S
uc

ce
ss

fu
l r

ef
in

em
en

ts

time (secs)

Average successful refinements w.r.t. time using statemate

intra-task inter-task inter-core

 0

 10

 20

 30

 40

 50

 60

 70

 0 100
 200

 300
 400

 500

P
re

ci
si

on
 im

pr
ov

em
en

t (
%

)

time (secs)

Average timing precision improvement w.r.t. time using statemate

intra-task inter-task inter-core

(a) (b)

Figure 9. (a) Number of successful refinements by CBMC w.r.t time (b) Timing precision improvement w.r.t. time

Variation with time: In Figure 9(a) and Figure 9(b), we
report the sensitivity of our analysis with respect to time.
Figure 9(a) depicts the average number of successful refine-
ments by CBMC when statemate is used as a conflicting
task. On the other hand, Figure 9(b) pictures the average
improvement in time precision when the same statemate
benchmark is used. It clearly shows that given more time
for refinement, our results can be improved.

Remarks: In the preceding discussion, we have shown
that we can substantially improve different types of cache
conflicts using refinement through a model checker. The
model checker refinement depends on the type of program
being checked and the size of cache for which conflicts
are being refined. The refinement pass may considerably
improve the WCET/CRPD in presence of infeasible paths,
as shown by our experiments. If the cache size is very small
compared to the size of a task, number of conflicts are indeed
high. Therefore, for such small caches, even the model

checker refinement may not generate any improvement. On
the other hand, if the cache size is very big compared
to the size of task, an AI-based analysis will generate a
small number of conflicts. As a result, the model checker
refinement will have a negligible improvement (since very
few conflicts need to be refined).

Time taken by our framework increases with the number
of model checker calls. Therefore, time taken during intra-
task and inter-task conflict analysis is higher than the inter-
core conflict analysis. We only check very light weight
assertions by the model checker. So CBMC applies its own
optimizations (e.g. slicing) to remove certain paths at the
time of assertion checking, reducing the time for a single
CBMC call. Finally, by storing the CBMC results (discussed
in Section VIII), we can reduce the number of CBMC calls.

XI. CONCLUSION

In this paper, we have proposed a scalable WCET analysis
framework using the combination of abstract interpretation

9

program set CHMC changed CHMC refined WCETbase WCETrefined Improvement(%) time (secs) MC calls
(in cycles) (in cycles)

cnt + qurt 14 7 212763 113163 46.8% 11.84 2
fir + qurt 9 3 457650 415590 9.2% 12.35 2

fdct + qurt 26 8 8994 7914 12% 40.86 5
jfdcint + qurt 40 9 144956 135866 6.3% 318.46 12

edn + qurt 69 15 175156 168376 4% 383.29 9
ndes + qurt 57 20 146142 127002 13.1% 57.68 5

cnt + statemate 29 7 212913 113313 46.8% 23.54 3
fir + statemate 27 10 478860 415800 13.2% 38.41 5

fdct + statemate 83 47 14124 7374 47.8% 90.21 27
jfdcint + statemate 114 69 193436 87386 54.8% 91.53 29

edn + statemate 204 127 204136 148276 27.4% 115.65 23
ndes + statemate 225 163 208392 97932 53% 93.44 29

cnt + nsichneu 16 7 211533 113133 46.5% 23.67 2
fir + nsichneu 15 7 457680 415650 9.2% 26.99 3

fdct + nsichneu 38 23 10344 7104 31.3% 99.17 13
jfdcint + nsichneu 45 26 123746 84356 31.8% 111.25 14

edn + nsichneu 73 46 116742 80592 31% 84.09 10
ndes + nsichneu 95 68 209442 112512 46.3% 99.81 15

cnt + compress 32 14 262083 113283 56.8% 15.61 4
fir + compress 19 6 467570 415710 11.1% 22.95 4

fdct + compress 86 47 14394 7644 46.9% 69.67 15
jfdcint + compress 108 58 196466 117686 40.1% 107.41 18

edn + compress 185 101 222166 166336 25.1% 126.55 18
ndes + compress 174 122 179832 103242 42.6% 114.81 15

Table V
REFINEMENT OF INTER-CORE CACHE CONFLICTS. We use a 2-way associative, 2 KB cache with 32 bytes block size for cnt and compress. A 4-way

associative, 8 KB cache with 32 bytes block size is used for nsichneu and statemate for their relatively large size.

and model checking for cache analysis. Our framework does
not affect the flexibility of abstract interpretation based cache
analysis and it can be composed with the analysis of differ-
ent other micro-architectural features (e.g. pipeline). More
over, our model checker refinement process is always safe.
Therefore, the model checker refinement can be terminated
at any point if the time budget is violated. Experimental
results show that we can obtain significant improvement for
various types of cache analysis in single and multi-cores.

REFERENCES

[1] M. Lv et. al. Combining abstract interpretation with model
checking for timing analysis of multicore software. 2010.

[2] X. Li et. al. Chronos: A timing analyzer for embedded
software. Science of Computer Programming, 2007. http:
//www.comp.nus.edu.sg/∼rpembed/chronos.

[3] aiT AbsInt. http://www.absint.com/ait.

[4] WCET benchmarks. http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[5] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation
of embedded software with instruction cache modeling. ACM
Trans. Des. Autom. Electron. Syst., 4(3), 1999.

[6] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
wcet prediction by separated cache and path analyses. Real-
Time Systems, 18(2/3), 2000.

[7] D. Hardy and I. Puaut. Wcet analysis of multi-level non-
inclusive set-associative instruction caches. In RTSS, 2008.

[8] C.G. Lee et. al. Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling. IEEE Trans. Comput.,
47(6), 1998.

[9] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate esti-
mation of cache-related preemption delay. In CODES+ISSS,
2003.

[10] Y. Tan and V.J. Mooney. Integrated intra- and inter-task cache
analysis for preemptive multi-tasking real-time systems. In
SCOPES, 2004.

[11] S. Altmeyer and C. Burguiere. A new notion of useful cache
block to improve the bounds of cache-related preemption
delay. In ECRTS, 2009.

[12] S. Altmeyer, C. Maiza, and J. Reineke. Resilience analysis:
tightening the crpd bound for set-associative caches. 2010.

[13] Y. Li et. al. Timing analysis of concurrent programs running
on shared cache multi-cores. In RTSS, 2009.

[14] J. Yan and W. Zhang. Wcet analysis for multi-core processors
with shared l2 instruction caches. In RTAS, 2008.

[15] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten
wcet estimates for multi-core processors with shared instruc-
tion caches. In RTSS, 2009.

[16] Reinhard Wilhelm. Why AI + ILP is good for WCET, but
MC is not, nor ILP alone. In VMCAI, 2004.

[17] Alexander Metzner. Why model checking can improve wcet
analysis. In CAV, 2004.

[18] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In TACAS, 2004.

10

