

T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l o f C o m p u t i n g
Lower Kent Ridge Road, Singapore 119260

TRB7/07

Ricochet: A Family of Unconstrained Algorithms for
 Graph clustering

Derry Tanti WIJAYA and Stephane BRESSAN

July 2007

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the
author, at the address shown on the cover.

JAFFAR, Joxan

Dean of School

Ricochet: A Family of Unconstrained Algorithms for Graph
Clustering

Derry Tanti Wijaya
National University of Singapore

School of Computing
3 Science Drive 2, Singapore 117543

+65 6516 2727

derrytan@comp.nus.edu.sg

Stéphane Bressan
National University of Singapore

School of Computing
3 Science Drive 2, Singapore 117543

+65 6516 2727

steph@nus.edu.sg

ABSTRACT

Partitional graph clustering algorithms like K-means and Star

necessitate a priori decisions on the number of clusters and

threshold on the weight of edges to be considered, respectively.

These decisions are difficult to make and their impact on

clustering performance can be significant. We propose a family of

algorithms for weighted graph clustering that neither requires a

predefined number of clusters, unlike K-means, nor a threshold on

the weight of edges, unlike Star. To do so, we use re-assignment

of vertices as a halting criterion, as in K-means, and a metric for

selecting clusters’ seeds, as in Star. Pictorially, the algorithms’

strategy resembles the rippling of stones thrown in a pond, thus

the name ‘Ricochet’. We evaluate the performance of our

proposed algorithms using standard datasets. In particular, we

evaluate the impact of removing the constraints on the number of

clusters and threshold by comparing the performance of our

algorithms with K-means and Star. We are also comparing the

performance of our algorithms with Markov Clustering which is

not parameterized by number of clusters nor threshold but has a

fine tuning parameter that impacts the coarseness of the result

clusters.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering

General Terms

Algorithms, Measurement, Performance, Experimentation.

Keywords

Clustering, Weighted Graph clustering, Document clustering, K-

Means Clustering, Star Clustering

1. INTRODUCTION
Clustering algorithms partition a set of objects into subsets or

clusters. Objects within a cluster should be similar while objects

in different clusters should be dissimilar, in general. With a scalar

similarity metric, the problem can be modeled as the partitioning

of a weighted graph whose vertices represent the objects to be

clustered and whose weighted edges represent the similarity

values. For instance, in a document clustering problem (we use

instances of this problem for performance evaluation) vertices are

documents (vectors in a vector space model), pairs of vertices are

connected (the graph is a clique) and edges are weighted with the

value of the similarity of the corresponding documents (cosine

similarity) [1, 2].

Partitional clustering graph algorithms, as the name indicates,

partition the graph into subsets or regions trying to identify and

separate dense regions from sparse regions in order to maximize

intra-cluster density and inter-cluster sparseness [3].

Partitional graph clustering algorithms like K-means and Star

require crucial a priori decisions on key parameters. The K-means

clustering algorithm [4] requires the number of clusters to be

provided before clustering. The Star clustering algorithm [5]

requires a threshold on the weight of edges to be fixed before

clustering. The choice of the value of these parameters can

greatly influence the effectiveness of the clustering algorithms.

In this paper, we propose a family of novel graph clustering

algorithms that require neither the number of clusters nor a

threshold to be determined before clustering. To do so, we

combine ideas from K-means and Star. The algorithms need to

select seeds (or candidate surrogate centroids for the cluster); we

use local metrics (combining degree of vertices and weight of

adjacent edges) for selecting clusters’ seeds. The algorithms

iteratively assign adjacent vertices to a cluster; we use re-

assignment of vertices as a halting criterion (no vertex needs to be

re-assigned). We call these algorithms Ricochet algorithms.

Pictorially, the algorithms’ strategy resembles the rippling

(iterative assignment) caused by stones (seeds) thrown in a pond,

thus the name ‘Ricochet’.

Our contribution is the presentation of this family of novel graph

clustering algorithms and their comparative performance analysis

with state-of-the-art algorithms using real world and standard

corpora for document clustering.

In the next section we discuss the main state-of-the-art weighted

graph clustering algorithms, namely, K-means, Star and Markov

Clustering. In section 3, we show how we devise unconstrained

algorithms spinning the ricochet and rippling metaphor. In section

4, we empirically evaluate and compare the performance of our

proposed algorithms. Finally, we synthesize our results and

contribution in section 5.

2. RELATED WORK
K-means [4], Star [5] and Markov Clustering (or MCL) [6] are

typical partitional clustering algorithms. They all can solve

weighted graph clustering problems.

K-means and Star are constrained by the a priori setting of a

parameter. Our proposal attempts to create an unconstrained

algorithm by combining idea from both K-means and Star.

Markov Clustering is not only unconstrained but also probably the

state-of-the-art in graph clustering algorithms. We review the

three algorithms and their variants.

K-means clustering algorithm [4] divides the set of vertices of a

graph into K clusters by first choosing randomly K seeds or

candidate centroids. It then assigns each vertex to the cluster

whose centroid is the closest. K-means iteratively re-computes the

position of the exact centroid based on the current members of

each cluster, and reassigns vertices to the cluster with the closest

centroid until a halting criterion is met (centroid no longer move).

The number of clusters, K, is provided a priori and does not

change.

K-means clustering attempts to maximize intra-cluster density by

minimizing the average distance between vertices and their

centroids or, equivalently, by maximizing the average similarity

between vertices and their centroids. K-means converges because

the average distance between vertices and their centroids

monotonically decreases at each iteration. First, the average

distance between vertices and their centroids decreases in the re-

assignment step since each vertex is assigned to the closest

centroid. Second, this value decreases in the recomputation step

because the new centroid is the vertex for which this average

distance between vertices and the centroid reaches its minimum.

A variant of K-means efficient for document clustering is K-

medoids [7]. It uses medoids, i.e. document vectors in the cluster

that are closest to the centroid, instead of centroids. Since

medoids are sparse document vectors, distance computations are

fast. In this paper, we use K-medoids to compare with the

performance of our proposed algorithms.

Unlike K-means, Star clustering, first proposed by Aslam et al. in

1998 [5], does not require the indication of an a priori number of

clusters. It also allows the clusters produced to overlap. This is a

generally desirable feature in information retrieval applications.

For document clustering, Star clustering analytically guarantees a

lower bound on the topic similarity between the documents in

each cluster and computes more accurate clusters than either the

older single link [8] or average link [9] hierarchical clustering

methods.

The drawback of Star clustering is that the lower bound guarantee

on the quality of each cluster depends on the choice of a threshold

σ on the weight of edges in the graph. To produce reliable

document clusters of similarity σ (i.e. clusters where documents

have pair-wise similarities of at least σ), the Star algorithm starts

by pruning the similarity graph of the document collection,

removing edges between documents whose cosine similarity in a

vector space is lesser than σ. Star clustering then formalizes

clustering by performing a minimum clique cover with maximal

cliques on this σ-similarity graph where the cover is a vertex

cover.

Since covering by cliques is an NP-complete problem [10, 11],

Star clustering approximates a clique cover greedily by dense sub-

graphs that are star shaped, consisting of a single Star center and

m satellite vertices, where there exist edges between the Star

center and each satellite vertex. Star clustering guarantees pair-

wise similarity of at least σ between the Star and each of the

satellite vertices. Aslam et al. also derives a lower bound on the

similarity between satellite vertices and predicts that the pair-wise

similarity between satellite vertices in a Star-shaped sub-graph is

high. Together with empirical evidence, Aslam et al. conclude that

covering σ-similarity graph with Star-shaped sub-graphs is an

accurate method for clustering.

The steps of Star clustering algorithm are as follows. The

algorithm starts by sorting vertices in the σ-similarity graph by

degree. Then it scans the sorted vertices from highest to lowest

degree as a greedy search for Star centers. Only vertices that do

not yet belong to a Star can become Star centers. Once a new Star

center v is selected, its center and marked bit are set, and for all

vertices w adjacent to v, w’s marked bit is set. Only one scan of

the sorted vertices is needed to determine all Star centers. Upon

termination, i.e. when all vertices have their marked bits set, these

conditions must be met: (1) the set of Star centers are the Star

cover of the graph, (2) a Star center is not adjacent to any other

Star center, and (3) every satellite vertex is adjacent to at least one

center vertex of equal or higher degree.

Since the selection of Star centers determines the Star cover of the

graph and ultimately the quality of the clusters, we experimented

with various metrics for the selection of Star centers to maximize

the ‘goodness’ of this greedy vertex cover. The result of our

experiments [12] suggests that a selection of Star centers based on

degree (as proposed by the original algorithm inventors) performs

almost as poorly as a random selection. On the other hand, the

average metric (i.e. selecting Star centers in order of the average

similarity between a potential Star center and the vertices

connected to it) is a fast and good approximation to the expensive

lower bound metric (derived in [5]) that maximizes intra-cluster

density in all variants of the Star algorithm. Notice that this

average metric is closely related to the notion of average similarity

between vertices and their medoids in K-medoids [6].

Markov Clustering tries and simulates a (stochastic) flow (or

random walks) in graphs [6]. The aim of MCL is to separate the

graph into regions with many edges inside and with only a few

edges between regions by maximizing the flow inside the regions

and minimizing the flow across regions. From a stochastic view

point, once inside a region, a random walker should have little

chance to walk out [13]. To do this, the graph is first represented

as stochastic (Markov) matrices where edges between vertices

indicate the amount of flow between the vertices: i.e. similarity

measures or the chance of walking from one vertex to another in

the graph. MCL algorithm simulates flow using two alternating

simple algebraic operations on the matrices: expansion, which

coincides with normal matrix multiplication, and inflation, which

is a Hadamard power followed by a diagonal scaling. The

expansion process causes flow to spread out and the inflation

process models the contraction of flow: it becoming thicker in

regions of higher current and thinner in regions of lower current.

The flow is eventually separated into different regions, yielding a

cluster interpretation of the initial graph. MCL does require

neither an a priori number of expected clusters nor a threshold on

the similarity values. However, it requires a fine tuning inflation

parameter that influences the coarseness and possibly the quality

of the result clusters. We nevertheless consider it as an

unconstrained algorithm, as, our experience suggests, optimal

values for the parameter seem to be rather stable across

applications.

The motivation underlying our work lies in the observation that

Star clustering algorithm provides a metric of selecting Star

centers that are potentially good cluster seeds for maximizing the

resulting intra-cluster density while K-means provides an

excellent convergence criterion that increases intra-cluster density

at each iteration. By using Star clustering metric for selecting Star

centers, we can find potential cluster seeds without having to

supply the number of clusters. By using K-means re-assignment of

vertices, we can update and improve the quality of these clusters

and reach a termination condition without having to determine

any threshold. We hope to achieve effectiveness comparable to

the best settings of K-means, Star and MCL in spite of the

absence of parameters. We also hope to produce more efficient

algorithms than only K-means, Star and MCL.

3. A FAMILY OF UNCONSTRAINED

ALGORITHMS
Ricochet algorithms, like most partitional graph clustering

algorithms, alternate two phases: the choice vertices to be seeds of

clusters and the assignment of vertices to existing clusters.

Similarly to Star and Star-ave algorithms, Ricochet algorithms

choose seeds in descending order of the value of a metric

combining their degree with the weight of adjacent edges. We use

the average weight of adjacent edges. Similarly to K-means the

iterative assignment is stopped once no vertex is left unassigned

and no vertex is candidate for re-assignment.

The family is twofold. In the first sub-family, seeds are chosen

one after the other. Stones are thrown one by one. In the second

sub-family, seeds are chosen at the same time. Stones are thrown

together. We call the former algorithms Sequential Rippling, and

the latter Concurrent Rippling.

The algorithms in the Sequential Rippling sub-family, because of

the way they select seeds and assign or re-assign vertices, are

intrinsically hard clustering algorithms, i.e. they produce disjoint

clusters. The algorithms in the Concurrent Rippling sub-family,

because of are soft clustering algorithms, i.e. they produce

possibly overlapping clusters.

3.1 Sequential Rippling

3.1.1 Sequential Rippling (SR)
The first algorithm of the subfamily is call Sequential Rippling (or

SR).

In this algorithm, vertices are first sorted in descending order of

the average weight of their adjacent edges (later referred to as the

weight of a vertex). The vertex with the highest value is chosen to

be the first seed. One cluster is formed that contains all other

vertices.

Subsequently, new seeds are chosen one by one from the ordered

list of vertices.

When a new seed is added, vertices are re-assigned to a new

cluster if they are closer to the new seed than they were to the

seed of their current cluster. If clustered are reduced to singletons

during re-assignment, they are deleted. If no vertex is closer to the

seed, no new cluster is created.

The algorithm stops when all vertices have been considered. The

pseudocode of the Sequential Rippling algorithm is given in

figure 1.

The worst case complexity of Sequential Rippling algorithm is O

(N3) because in the worst case the algorithm has to iterate through

at most N vertices, each time comparing the distance of N vertices

to at most N centroids.

3.1.2 Balanced Sequential Rippling (BSR)
The Second algorithm of the subfamily is called Balanced

Sequential Rippling (BSR). In order to balance the distribution of

seeds in the graph, we choose a next seed that is both a reasonable

centroid for a new cluster (large value for the metric) as well as

sufficiently far from the previous seeds.

As in the previous algorithm, the vertex with the highest weight is

chosen to be the first seed. One cluster is formed that contains all

other vertices.

Subsequently, a next seed is chosen that maximizes the ratio of its

weight to the sum of its similarity to the centroids of existing

clusters. This is a compromise between weight and similarity. We

use here the simplest possible formula to achieve such

compromise. It could clearly be refined and fine-tuned.

As in the previous algorithm, when a new seed is added, vertices

are re-assigned to a new cluster if they are closer to the new seed

than they were to the seed of their current cluster. If clustered are

reduced to singletons during re-assignment, they are deleted. If no

vertex is closer to the seed, no new cluster is created. The

algorithm terminates when there is no re-assignment of vertices.

The pseudocode of Balanced Sequential Rippling algorithm is

given in figure 2.

Given a Graph G = (V, E). V contains vertices, |V| = N. Each vertex

has a weight which is the average similarity between the vertex and its

adjacent vertices. E contains edges in G (self-loops removed) with

similarity as weights.

Algorithm: SR ()

Sort V in order of vertices’ weights

Take the heaviest vertex v from V

listCentroid.add (v)

Reassign all other vertices to v’s cluster

While (V is not empty)

 Take the next heaviest vertex v from V

 Reassign vertices which are more similar to v than to other

 centroid

 If there are re-assignments

 listCentroid.add (v)

 Reassign singleton clusters to its nearest centroid

For all i ε listCentroid return i and its associated cluster

Figure 1. Sequential Rippling Algorithm

.

Algorithm: BSR ()

Sort V in order of vertices’ weights

Take the heaviest vertex v from V

listCentroid.add (v)

Reassign all other vertices to v’s cluster

Reassignment = true

While (Reassignment and V is not empty)

 Reassignment = false

 Take a vertex v ∉ listCentroid from V whose ratio of its weight to

 the sum of its similarity to existing centroids is the maximum

 Reassign vertices which are more similar to v than to other centroid

 If there are re-assignments

 Reassignment = true

 listCentroid.add (v)

 Reassign singleton clusters to its nearest centroid

For all i ε listCentroid return i and its associated cluster

Figure 2. Balanced Sequential Rippling Algorithm

.

The worst case complexity of Balanced Sequential Rippling

algorithm is O (N3) because in the worst case the algorithm has to

iterate through at most N vertices, each time comparing the

distance of N vertices to at most N centroids.

3.2 Concurrent Rippling

3.2.1 Concurrent Rippling (CR)
The first algorithm of the sub-family is called Concurrent

Rippling (CR).

In this algorithm, each vertex is initially marked to be a seed.

Pairs of vertices and seeds are ordered in ascending order of their

similarity.

Iteratively, the next pair is considered. If the vertex is not a seed

itself, it is assigned to the cluster of the corresponding seed

(notice that at this point is belongs to at least two clusters). If the

vertex is a seed itself it is assigned to the cluster of the

corresponding seed, if and only if its weight is smaller than the

one of the seed, and the two clusters are merged.

Making sure that the ripple propagates at equal speed for all seeds

(with possible and occasional merging of clusters) requires the

sorting of a list whose size is the square of the number of vertices.

The algorithm terminates when the centroids no longer change.

The pseudocode of Concurrent Rippling algorithm is given in

figure 3.

Concurrent Rippling algorithm requires O (N2logN) complexity to

sort the N-1 neighbors of the N vertices. It requires another O

(N2logN) to sort the N2 number of edges. In the worst case, the

algorithm has to iterate through all the N2 edges. Hence, in the

worst case the complexity of the algorithm is O (N2logN).

3.2.2 Ordered Concurrent Rippling (OCR)
The second algorithm of the sub-family is called Ordered

Concurrent Rippling (OCR). In this algorithm, the constant speed

of rippling is abandoned to be approximated by a simple ordering

of vertices according to their distance to the candidate seed. The

method allows not only to improve efficiency (although the worst

case complexity is the same) but also to favor heavy seeds.

The key point of this algorithm is that at each time step it tries to

maximize the average similarity between vertices and their

centroids. The algorithm does this by processing adjacent vertices

for each vertex in order of their similarity (from highest to

lowest). This ensures that at each time step, the best possible

merger for each vertex v is found. This means that after merging a

vertex to v with similarity s, we can be sure that we have already

found and merged all vertices (whose similarity is better than s) to

v. At each time step therefore, the algorithm assigns vertices to

their best possible cluster.

By choosing higher weight vertex as a centroid whenever two

centroids are adjacent to one another, the algorithm ensures that

the centroid of a cluster is always the point with the highest

weight. Since we define a vertex weight as the average similarity

between the vertex and its adjacent vertices; choosing a centroid

with higher weight is an approximation to maximizing the average

similarity between the centroid and its vertices.

The pseudocode of Ordered Concurrent Rippling algorithm is

given in figure 4.

The Ordered Concurrent Rippling algorithm terminates when the

centroids no longer change. The complexity of the algorithm is O

(N2logN) to sort the N-1 neighbors of the N vertices. The

algorithm then iterates at most N2 times. Hence the overall worst

case complexity of the algorithm is O (N2logN).

For each vertex v, v.neighbor is the list of v’s adjacent vertices sorted by

their similarity to v from highest to lowest. If v is a centroid (i.e.

v.centroid == 1); v.cluster contains the list of vertices ≠ v assigned to v

Algorithm: CR ()

Sort E in order of the edge weights

public CentroidChange = true

index = 0

While (CentroidChange && index < N-1 && E is not empty)

 CentroidChange = false

 For each vertex v, take its edge evw connecting v to its next

 closest neighbor w; i.e. w = v.neighbor [index]

 Store these edges in S

 Find the lowest edge weight in S, say low, and empty S

 Take all edges from E whose weight >= low

 Store these edges in S

 PropagateRipple (S)

 index ++

For all i ε V, if i is a centroid, return i and i.cluster

Sub Procedure: PropagateRipple (list S)

/* This sub procedure is to propagate ripples for all the centroids. If the

ripple of one centroid touches another, the heavier weight centroid will

absorb the lighter centroid and its cluster. If the ripple of a centroid

touches a non-centroid, the non-centroid is assigned to the centroid. A

non-centroid can be assigned to more than one centroid, allowing

overlapping between clusters, a generally desirable feature in IR*/

While (S is not empty)

 Take the next heaviest edge, say evw, from S

 If v ∉ x.cluster for all x ε V

 If w is a centroid, compare v’s weight to w’s weight

 If (w.weight > v.weight)

 add v and v.cluster into w.cluster

 Empty v.cluster

 If v is a centroid

 v.centroid = 0

 CentroidChange = true

 Else

 add w and w.cluster into v.cluster

 Empty w.cluster

 w.centroid = 0

 CentroidChange = true

 Else if w is not a centroid

 v.cluster.add (w)

 If v is not a centroid

 v.centroid = 1

 CentroidChange = true

Figure 3. Concurrent Rippling Algorithm

.

4. PERFORMANCE ANALYSIS

4.1 Experimental Setup
In order to evaluate our proposed algorithms, we empirically

compare, in subsection 4.2.1, the performance our algorithms with

the constrained algorithms: (1) K-medoids (that is given the

optimum/correct number of clusters as obtained from the data

set); (2) Star clustering algorithm, and (3) our improved version

of Star (i.e. Star Ave) that uses average metric to pick star centers

[12]. This is to investigate the impact of removing the constraints

on the number of clusters (K-Medoids) and threshold (Star) on the

result of clustering.

We then compare, in subsection 4.2.2, the performance of our

algorithms with the state-of-the-art unconstrained algorithm, (4)

Markov Clustering (MCL), varying MCL’s fine-tuning inflation

parameter.

We use data from Reuters-21578 [14], TIPSTER–AP [15] and a

collection of web documents constructed using the Google News

search engine [16] and referred to as Google.

The Reuters-21578 collection contains 21,578 documents that

appeared in Reuter’s newswire in 1987. The documents are

partitioned into 22 sub-collections, each of the first 21 sub-

collections contain 1000 documents while the last sub-collection

contains 578 documents. For each sub-collection, we cluster only

documents that have at least one explicit topic (i.e. documents that

have some topic categories within its <TOPICS> tags).

The TIPSTER–AP collection contains AP newswire from the

TIPSTER collection. For the purpose of our experiments, we have

partitioned TIPSTER-AP into 2 separate sub-collections.

Our original collection: Google contains news documents

obtained from Google News during in December 2006. This

collection is partitioned into 2 separate sub-collections. The

documents have been labeled manually.

In total we have 26 sub-collections. The sub-collections, their

number of documents and topics/clusters are reported in Table 1.

By default and unless otherwise specified, we set the value of

threshold σ to be the average similarity of documents in the given

collection. We apply the clustering algorithms to each sub-

collection. We present the results averaged for each collection.

We study effectiveness (recall, r, precision, p, and F1 measure

[17], F1 = (2 * p * r) / (p + r)), and efficiency in terms of running

time. In each experiment, for each topic, we return the cluster

which best approximates the topic. Each topic is mapped to the

cluster that produces the maximum F1-measure with respect to the

topic:

topic (i) = maxj {F1 (i, j)}

where F1 (i, j) is the F1 measure of the cluster number j with

respect to the topic number i. The weighted average of F1

measure for each sub-collection is calculated as follows:

F1 = Σ (ni/S) * F1 (i, topic (i)); for 0 ≤ i ≤ N

S = Σ ni; for 0 ≤ i ≤ N

where N is the number of topics in the sub-collection; ni is the

number of documents belonging to topic i in the given collection.

For each sub-collection, we calculate the weighted-average of

precision, recall and F1-measure produced by each algorithm. We

then present the average results produced by each algorithm over

each collection.

Table 1. Description of collections

Sub-collection # of

docs

of

topic

Sub-collection # of

docs

of

topic

reut2-000.sgm 981 48 Reut2-001.sgm 990 41

reut2-002.sgm 991 38 Reut2-003.sgm 995 46

reut2-004.sgm 990 42 Reut2-005.sgm 997 50

reut2-006.sgm 990 38 Reut2-007.sgm 988 44

reut2-008.sgm 991 42 Reut2-009.sgm 495 24

reut2-010.sgm 989 39 Reut2-011.sgm 987 42

reut2-012.sgm 987 50 Reut2-013.sgm 658 35

reut2-014.sgm 693 34 Reut2-015.sgm 992 45

reut2-016.sgm 488 34 Reut2-017.sgm 994 61

reut2-018.sgm 994 50 Reut2-019.sgm 398 24

reut2-020.sgm 988 28 Reut2-021.sgm 573 24

Tipster-AP1 1787 47 Tipster-AP2 1721 48

Google1 1019 15 Google2 1010 14

4.2 Performance Results and their Discussion

4.2.1 Apples and Oranges: Comparison with

Constrained Algorithms
We first compare the effectiveness and efficiency of our proposed

algorithms with the ones of a variant of K-medoids, Star, and our

improved version of Star, Star-ave, in order to determine the

consequences of combining ideas from both algorithms to

obtained an unconstrained family not requiring parameters. There

is, of course, a significant benefit per se in removing the need for

parameter setting. Yet the subsequent experiments show that this

can be done with a significant gain in efficiency and, only in the

some cases, at a minor cost in effectiveness.

In figure 5, we can see that the effect of combining ideas from

both K-means and Star in our proposed algorithms improves

precision for Google data. With the exception of SR, our

proposed algorithms also improve the F1-value and maintain

recall. In particular, CR is better than K-medoids, Star and Star-

ave in terms of F1-value. BSR and OCR are better than K-

medoids and Star in terms of F1-value; and are comparable to

For each vertex v, v.neighbor is the list of v’s adjacent vertices sorted by

their similarity to v from highest to lowest. If v is a centroid (i.e.

v.centroid == 1); v.cluster contains the list of vertices ≠ v assigned to v

Algorithm: OCR ()

public CentroidChange = true

index = 0

While (CentroidChange && index < N-1)

 CentroidChange = false

 For each vertex v, take its edge evw connecting v to its next

 closest neighbor w; i.e. w = v.neighbor [index]

 Store these edges in S

 PropagateRipple (S)

 index ++

For all i ε V, if i is a centroid, return i and i.cluster

Figure 4. Ordered Concurrent Rippling Algorithm

.

Star-ave. In terms of efficiency (cf. figure 6), SR and BSR is

comparable to K-medoids. CR and OCR are much faster than K-

medoids, Star and Star-ave.

On Tipster-AP data (cf. figure 7), SR, BSR and OCR again yield

higher precision than Star and Star-Ave. BSR and OCR yield a

higher F1-value than Star and Star-Ave. OCR performs the best

among our proposed algorithms and its effectiveness is

comparable to that of a K-medoids supplied with the correct

number of clusters. OCR is also the fastest. It is significantly

much faster than K-medoids (cf. figure 8).

On Reuters data (cf. figure 9), SR and BSR again yield a higher

precision than K-medoids, Star and Star-Ave. In terms of F1-

value, it is OCR that performs the best among our proposed

algorithms. OCR performance is better than K-medoids and is

comparable to that of Star and Star-Ave. In terms of efficiency (cf.

figure 10), OCR is again much faster than K-medoids, Star and

Star-Ave.

In summary, BSR and OCR are the most effective among our

proposed algorithms. BSR achieves higher precision than K-

medoids, Star and Star-Ave on all three data sets. OCR achieves a

Figure 5. Effectiveness on Google Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K-medoids Star Star-Ave SR BSR CR OCR

precision

recall

F1

Figure 7. Effectiveness on Tipster-AP Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K-medoids Star Star-Ave SR BSR CR OCR

precision

recall

F1

0

50000

100000

150000

200000

250000

K-

medoids

Star Star-Ave SR BSR CR OCR

m
il

is
e

c
o

n
d

s

Figure 8. Efficiency on Tipster-AP Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K-medoids Star Star-Ave SR BSR CR OCR

precision

recall

F1

Figure 9. Effectiveness on Reuters Data

.

Figure 10. Efficiency on Reuters Data

.

0

2000

4000

6000

8000

10000

12000

14000

16000

K-medoids Star Star-Ave SR BSR CR OCR

m
il

is
e

c
o

n
d

s

0

2000

4000

6000

8000

10000

12000

14000

16000

K-medoids Star Star-Ave SR BSR CR OCR

m
il

is
e

c
o

n
d

s

Figure 6. Efficiency on Google Data

balance between high precision and recall, and obtains

comparable or higher F1-value than K-medoids, Star and Star-

Ave on the data sets. The sequential algorithm, SR and BSR are

not efficient. The concurrent algorithms CR and OCR are

significantly more efficient than all other algorithms.

In the next section, we compare BSR and OCR, with the

unconstrained algorithm: Markov Clustering.

4.2.2 Comparison with Unconstrained Algorithms
We first illustrate the influence of MCL’s inflation parameter on

the algorithm’s performance. We vary it between 0.1 and 30.0 (we

have empirically verified that this range is representative of MCL

performance on our data sets) and report results for representative

values.

As shown in figure 11, at a value of 0.1, the resulting clusters

have high recall and low precision. As the inflation parameter

increases, the recall drops and precision improves, resulting in

higher F1-value. At the other end of the spectrum, at a value of

30.0, the resulting clusters are back to having high recall and low

precision again.

In terms of efficiency (cf. figure 12), as the inflation parameter

increases, the running time decreases, indicating that MCL is

more efficient at higher inflation value. From figure 11 and 12, we

have shown empirically that the choice of inflation value indeed

affects the effectiveness and efficiency of MCL algorithm.

Both MCL’s effectiveness and efficiency vary significantly at

different inflation values. The optimal value seems however to

always be around 3.0.

We now compare the performance of our best performing

algorithms, BSR and OCR, to the performance of MCL algorithm

at its best inflation value as well as at its minimum and maximum

inflation values, for each collection.

From figure 13, with Google data, we can see that the

effectiveness of BSR and OCR is competitive but not equal to the

one of MCL at its best inflation value. Yet they are more effective

than MCL at the minimum and maximum inflation values. We

also see in figure 14 that both BSR and OCR are significantly

faster than MCL at all inflation values.

On Tipster-AP data (cf. figure 15), BSR and OCR are slightly less

effective than MCL at the best inflation value. However, both

BSR and OCR are more effective than MCL at the minimum and

maximum inflation values. In terms of efficiency (cf. figure 16),

OCR is also much faster than MCL at all inflation values.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

M
C

L
(0

.1
)

M
C

L
(2

.0
)

M
C

L
(3

.2
)

M
C

L
(2

0
.0

)

M
C

L
(3

0
.0

)

M
C

L
(0

.1
)

M
C

L
(2

.0
)

M
C

L
(3

.2
)

M
C

L
(1

5
.0

)

M
C

L
(3

0
.0

)

M
C

L
(0

.1
)

M
C

L
(2

.0
)

M
C

L
(2

.2
)

M
C

L
(2

0
.0

)

M
C

L
(3

0
.0

)

google tipster reuters

m
il
is

e
c

o
n

d
s

Figure 12. Efficiency of MCL at Different Parameters

.

Figure 13. Effectiveness on Google Data

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MCL(0.1) MCL(3.2) MCL(30.0) BSR OCR

precision

recall

F1

Figure 14. Efficiency on Google Data

.

0

5000

10000

15000

20000

25000

30000

35000

40000

MCL(0.1) MCL(3.2) MCL(30.0) BSR OCR

m
il

is
e
c
o

n
d

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
C

L
(0

.1
)

M
C

L
(2

.0
)

M
C

L
(3

.2
)

M
C

L
(2

0
.0

)

M
C

L
(3

0
.0

)

M
C

L
(0

.1
)

M
C

L
(2

.0
)

M
C

L
(3

.2
)

M
C

L
(1

5
.0

)

M
C

L
(3

0
.0

)

M
C

L
(0

.1
)

M
C

L
(2

.0
)

M
C

L
(2

.2
)

M
C

L
(2

0
.0

)

M
C

L
(3

0
.0

)

google tipster reuters

precision

recall

F1

Figure 11. Effectiveness of MCL at Different Parameters

The same trend is also noticeable on Reuters data (cf. figure 17).

BSR and OCR are slightly less effective than MCL at its best

inflation value. However, BSR and OCR are more effective than

MCL at the minimum and maximum inflation values. In terms of

efficiency (cf. figure 18), once again, OCR is much faster than

MCL at all inflation values.

In summary, although MCL can be slightly more effective than

our proposed algorithms at the best settings and around, one of

our algorithm, OCR, is not only respectably effective but also

significantly more efficient.

5. CONCLUSIONS
We have proposed a family of algorithm for the clustering of

weighted graphs. Unlike state-of-the-art K-means and Star, the

algorithms do not require the a priori setting of extrinsic

parameters. Unlike state-of-the-art MCL, they do not require the a

priori setting of intrinsic fine tuning parameters. We call them

unconstrained.

The algorithms have been devised by spinning the metaphor of

ripples created by the throwing of stones in a pond. Clusters’

seeds are stones and rippling is the iterative assignment of objects

to clusters.

We have proposed sequential (in which seeds are chosen one by

one) and concurrent (in which every vertex is initially a seed)

versions of the algorithms and variants.

After a comprehensive comparative performance analysis with

reference data sets in the domain of document corpora clustering,

we conclude that, while all our algorithms are competitive, one of

them, Ordered Concurrent Rippling, yield a very respectable

effectiveness while being the most efficient.

We have therefore proposed a novel family of algorithms, called

Ricochet algorithms, and, in particular, one new effective and

extremely efficient algorithm for weighted graph clustering, called

Ordered Concurrent Rippling or OCR

6. REFERENCES
[1] G. Salton, Automatic Text Processing: the transformation,

analysis, and retrieval of information by computer, Addison-

Wesley, 1989.

[2] G. Salton, The Smart document retrieval project, In

Proceedings of the Fourteenth Annual International

ACM/SIGIR Conference on Research and Development in

Information Retrieval, pp 356-358, 1991.

Figure 15. Effectiveness on Tipster-AP Data

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MCL(0.1) MCL(3.2) MCL(30.0) BSR OCR

precision

recall

F1

Figure 16. Efficiency on Tipster-AP Data

.

0

50000

100000

150000

200000

250000

MCL(0.1) MCL(3.2) MCL(30.0) BSR OCR

m
il

is
e
c

o
n

d
s

Figure 17. Effectiveness on Reuters Data

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MCL(0.1) MCL(2.2) MCL(30.0) BSR OCR

precision

recall

F1

Figure 18. Efficiency on Reuters Data

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

MCL(0.1) MCL(2.2) MCL(30.0) BSR OCR

m
il

is
e
c

o
n

d
s

[3] Ulrik Brandes, Marco Gaertler, Dorothea Wagner,

Experiments on Graph Clustering Algorithms, Lecture Notes

in Computer Science, Di Battista and U. Zwick (Eds.):568--

579, 2003.

[4] J. B. MacQueen, Some Methods for classification and

Analysis of Multivariate Observations, Proceedings of 5th

Berkeley Symposium on Mathematical Statistics and

Probability, Berkeley, University of California Press, 1:281-

297, 1967.

[5] J. Aslam; K. Pelekhov, D. Rus, The Star Clustering

Algorithm, In Journal of Graph Algorithms and Applications,

8(1) 95–129, 2004.

[6] Stijn van Dongen, Graph clustering by flow simulation, 2000

- Tekst. - Proefschrift Universiteit Utrecht, 2000.

[7] L. Kaufman and P. Rousseeuw, Finding groups in data: an

introduction to cluster analysis, New York: John Wiley and

Sons, 1990.

[8] W. B. Croft, Clustering large files of documents using the

single-link method, Journal of the American Society for

Information Science, pp 189-195, November 1977.

[9] E. Voorhees, The cluster hypothesis revisited, In Proceedings

of the 8th SIGIR, pp 95-104, 1985.

[10] C. Lund, and M. Yannakakis, On the hardness of

approximating minimization problems, Journal of the ACM

41, pp. 1960-981, 1994.

[11] W. Press, B. Flannery, S. Teukolsky, W. Vetterling,

Numerical Recipes in C: The Art of Scientific Computing,

Cambridge University Press, 1988.

[12] Derry Wijaya and Stéphane Bressan, Journey to the Centre of

the Star: Various Ways of Finding Star Centers in Star

Clustering, accepted as a full paper in the 18th International

Conference on Database and Expert Systems Applications

(DEXA), 2007.

[13] Henk Nieland, Fast Graph Clustering Algorithm by Flow

Simulation, Research and Development ERCIM News No.

42, July 2000.

[14] http://www.daviddlewis.com/resources/testcollections/reuters

21578 (visited in December 2006).

[15] http://trec.nist.gov/data.html (visited in December 2006).

[16] Google News (http://news.google.com.sg).

[17] B. Larsen and C. Aone, Fast and Effective Text Mining

Using Linear-time Document Clustering, In KDD’99, San

Diego, California, pp. 16–22, 1999.

	upload.pdf
	TRA204.pdf
	Table 1 Datasets

	1:

