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ABSTRACT 

Partitional graph clustering algorithms like K-means and Star 

necessitate a priori decisions on the number of clusters and 

threshold on the weight of edges to be considered, respectively. 

These decisions are difficult to make and their impact on 

clustering performance can be significant. We propose a family of 

algorithms for weighted graph clustering that neither requires a 

predefined number of clusters, unlike K-means, nor a threshold on 

the weight of edges, unlike Star. To do so, we use re-assignment 

of vertices as a halting criterion, as in K-means, and a metric for 

selecting clusters’ seeds, as in Star. Pictorially, the algorithms’ 

strategy resembles the rippling of stones thrown in a pond, thus 

the name ‘Ricochet’. We evaluate the performance of our 

proposed algorithms using standard datasets. In particular, we 

evaluate the impact of removing the constraints on the number of 

clusters and threshold by comparing the performance of our 

algorithms with K-means and Star.  We are also comparing the 

performance of our algorithms with Markov Clustering which is 

not parameterized by number of clusters nor threshold but has a 

fine tuning parameter that impacts the coarseness of the result 

clusters. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Clustering 

General Terms 

Algorithms, Measurement, Performance, Experimentation. 

Keywords 

Clustering, Weighted Graph clustering, Document clustering, K-

Means Clustering, Star Clustering 

1. INTRODUCTION 
Clustering algorithms partition a set of objects into subsets or 

clusters. Objects within a cluster should be similar while objects 

in different clusters should be dissimilar, in general. With a scalar 

similarity metric, the problem can be modeled as the partitioning 

of a weighted graph whose vertices represent the objects to be 

clustered and whose weighted edges represent the similarity 

values. For instance, in a document clustering problem (we use 

instances of this problem for performance evaluation) vertices are 

documents (vectors in a vector space model), pairs of vertices are 

connected (the graph is a clique) and edges are weighted with the 

value of the similarity of the corresponding documents (cosine 

similarity) [1, 2].  

Partitional clustering graph algorithms, as the name indicates, 

partition the graph into subsets or regions trying to identify and 

separate dense regions from sparse regions in order to maximize 

intra-cluster density and inter-cluster sparseness [3].  

Partitional graph clustering algorithms like K-means and Star 

require crucial a priori decisions on key parameters. The K-means 

clustering algorithm [4] requires the number of clusters to be 

provided before clustering. The Star clustering algorithm [5] 

requires a threshold on the weight of edges to be fixed before 

clustering.  The choice of the value of these parameters can 

greatly influence the effectiveness of the clustering algorithms.  

In this paper, we propose a family of novel graph clustering 

algorithms that require neither the number of clusters nor a 

threshold to be determined before clustering. To do so, we 

combine ideas from K-means and Star. The algorithms need to 

select seeds (or candidate surrogate centroids for the cluster); we 

use local metrics (combining degree of vertices and weight of 

adjacent edges) for selecting clusters’ seeds. The algorithms 

iteratively assign adjacent vertices to a cluster; we use re-

assignment of vertices as a halting criterion (no vertex needs to be 

re-assigned). We call these algorithms Ricochet algorithms. 

Pictorially, the algorithms’ strategy resembles the rippling 

(iterative assignment) caused by stones (seeds) thrown in a pond, 

thus the name ‘Ricochet’.  

Our contribution is the presentation of this family of novel graph 

clustering algorithms and their comparative performance analysis 

with state-of-the-art algorithms using real world and standard 

corpora for document clustering.   

In the next section we discuss the main state-of-the-art weighted 

graph clustering algorithms, namely, K-means, Star and Markov 

Clustering. In section 3, we show how we devise unconstrained 

algorithms spinning the ricochet and rippling metaphor. In section 

4, we empirically evaluate and compare the performance of our 

proposed algorithms. Finally, we synthesize our results and 

contribution in section 5. 

2. RELATED WORK 
K-means [4], Star [5] and Markov Clustering (or MCL) [6] are 

typical partitional clustering algorithms. They all can solve 

weighted graph clustering problems. 

K-means and Star are constrained by the a priori setting of a 

parameter. Our proposal attempts to create an unconstrained 

algorithm by combining idea from both K-means and Star. 



Markov Clustering is not only unconstrained but also probably the 

state-of-the-art in graph clustering algorithms. We review the 

three algorithms and their variants. 

K-means clustering algorithm [4] divides the set of vertices of a 

graph into K clusters by first choosing randomly K seeds or 

candidate centroids. It then assigns each vertex to the cluster 

whose centroid is the closest. K-means iteratively re-computes the 

position of the exact centroid based on the current members of 

each cluster, and reassigns vertices to the cluster with the closest 

centroid until a halting criterion is met (centroid no longer move). 

The number of clusters, K, is provided a priori and does not 

change.  

K-means clustering attempts to maximize intra-cluster density by 

minimizing the average distance between vertices and their 

centroids or, equivalently, by maximizing the average similarity 

between vertices and their centroids. K-means converges because 

the average distance between vertices and their centroids 

monotonically decreases at each iteration. First, the average 

distance between vertices and their centroids decreases in the re-

assignment step since each vertex is assigned to the closest 

centroid. Second, this value decreases in the recomputation step 

because the new centroid is the vertex for which this average 

distance between vertices and the centroid reaches its minimum.  

A variant of K-means efficient for document clustering is K-

medoids [7]. It uses medoids, i.e. document vectors in the cluster 

that are closest to the centroid, instead of centroids. Since 

medoids are sparse document vectors, distance computations are 

fast. In this paper, we use K-medoids to compare with the 

performance of our proposed algorithms. 

Unlike K-means, Star clustering, first proposed by Aslam et al. in 

1998 [5], does not require the indication of an a priori number of 

clusters. It also allows the clusters produced to overlap. This is a 

generally desirable feature in information retrieval applications. 

For document clustering, Star clustering analytically guarantees a 

lower bound on the topic similarity between the documents in 

each cluster and computes more accurate clusters than either the 

older single link [8] or average link [9] hierarchical clustering 

methods.  

The drawback of Star clustering is that the lower bound guarantee 

on the quality of each cluster depends on the choice of a threshold 

σ on the weight of edges in the graph. To produce reliable 

document clusters of similarity σ (i.e. clusters where documents 

have pair-wise similarities of at least σ), the Star algorithm starts 

by pruning the similarity graph of the document collection, 

removing edges between documents whose cosine similarity in a 

vector space is lesser than σ. Star clustering then formalizes 

clustering by performing a minimum clique cover with maximal 

cliques on this σ-similarity graph where the cover is a vertex 

cover.  

Since covering by cliques is an NP-complete problem [10, 11], 

Star clustering approximates a clique cover greedily by dense sub-

graphs that are star shaped, consisting of a single Star center and 

m satellite vertices, where there exist edges between the Star 

center and each satellite vertex. Star clustering guarantees pair-

wise similarity of at least σ between the Star and each of the 

satellite vertices. Aslam et al. also derives a lower bound on the 

similarity between satellite vertices and predicts that the pair-wise 

similarity between satellite vertices in a Star-shaped sub-graph is 

high. Together with empirical evidence, Aslam et al. conclude that 

covering σ-similarity graph with Star-shaped sub-graphs is an 

accurate method for clustering.  

The steps of Star clustering algorithm are as follows. The 

algorithm starts by sorting vertices in the σ-similarity graph by 

degree. Then it scans the sorted vertices from highest to lowest 

degree as a greedy search for Star centers. Only vertices that do 

not yet belong to a Star can become Star centers. Once a new Star 

center v is selected, its center and marked bit are set, and for all 

vertices w adjacent to v, w’s marked bit is set. Only one scan of 

the sorted vertices is needed to determine all Star centers. Upon 

termination, i.e. when all vertices have their marked bits set, these 

conditions must be met: (1) the set of Star centers are the Star 

cover of the graph, (2) a Star center is not adjacent to any other 

Star center, and (3) every satellite vertex is adjacent to at least one 

center vertex of equal or higher degree. 

Since the selection of Star centers determines the Star cover of the 

graph and ultimately the quality of the clusters, we experimented 

with various metrics for the selection of Star centers to maximize 

the ‘goodness’ of this greedy vertex cover. The result of our 

experiments [12] suggests that a selection of Star centers based on 

degree (as proposed by the original algorithm inventors) performs 

almost as poorly as a random selection. On the other hand, the 

average metric (i.e. selecting Star centers in order of the average 

similarity between a potential Star center and the vertices 

connected to it) is a fast and good approximation to the expensive 

lower bound metric (derived in [5]) that maximizes intra-cluster 

density in all variants of the Star algorithm. Notice that this 

average metric is closely related to the notion of average similarity 

between vertices and their medoids in K-medoids [6]. 

Markov Clustering tries and simulates a (stochastic) flow (or 

random walks) in graphs [6]. The aim of MCL is to separate the 

graph into regions with many edges inside and with only a few 

edges between regions by maximizing the flow inside the regions 

and minimizing the flow across regions. From a stochastic view 

point, once inside a region, a random walker should have little 

chance to walk out [13]. To do this, the graph is first represented 

as stochastic (Markov) matrices where edges between vertices 

indicate the amount of flow between the vertices: i.e. similarity 

measures or the chance of walking from one vertex to another in 

the graph. MCL algorithm simulates flow using two alternating 

simple algebraic operations on the matrices: expansion, which 

coincides with normal matrix multiplication, and inflation, which 

is a Hadamard power followed by a diagonal scaling. The 

expansion process causes flow to spread out and the inflation 

process models the contraction of flow: it becoming thicker in 

regions of higher current and thinner in regions of lower current. 

The flow is eventually separated into different regions, yielding a 

cluster interpretation of the initial graph. MCL does require 

neither an a priori number of expected clusters nor a threshold on 

the similarity values. However, it requires a fine tuning inflation 

parameter that influences the coarseness and possibly the quality 

of the result clusters. We nevertheless consider it as an 

unconstrained algorithm, as, our experience suggests, optimal 

values for the parameter seem to be rather stable across 

applications. 

The motivation underlying our work lies in the observation that 

Star clustering algorithm provides a metric of selecting Star 



centers that are potentially good cluster seeds for maximizing the 

resulting intra-cluster density while K-means provides an 

excellent convergence criterion that increases intra-cluster density 

at each iteration. By using Star clustering metric for selecting Star 

centers, we can find potential cluster seeds without having to 

supply the number of clusters. By using K-means re-assignment of 

vertices, we can update and improve the quality of these clusters 

and reach a termination condition without having to determine 

any threshold. We hope to achieve effectiveness comparable to 

the best settings of K-means, Star and MCL in spite of the 

absence of parameters. We also hope to produce more efficient 

algorithms than only K-means, Star and MCL.  

3. A FAMILY OF UNCONSTRAINED 

ALGORITHMS 
Ricochet algorithms, like most partitional graph clustering 

algorithms, alternate two phases: the choice vertices to be seeds of 

clusters and the assignment of vertices to existing clusters. 

Similarly to Star and Star-ave algorithms, Ricochet algorithms 

choose seeds in descending order of the value of a metric 

combining their degree with the weight of adjacent edges. We use 

the average weight of adjacent edges. Similarly to K-means the 

iterative assignment is stopped once no vertex is left unassigned 

and no vertex is candidate for re-assignment. 

The family is twofold. In the first sub-family, seeds are chosen 

one after the other. Stones are thrown one by one. In the second 

sub-family, seeds are chosen at the same time. Stones are thrown 

together. We call the former algorithms Sequential Rippling, and 

the latter Concurrent Rippling. 

The algorithms in the Sequential Rippling sub-family, because of 

the way they select seeds and assign or re-assign vertices, are 

intrinsically hard clustering algorithms, i.e. they produce disjoint 

clusters. The algorithms in the Concurrent Rippling sub-family, 

because of are soft clustering algorithms, i.e. they produce 

possibly overlapping clusters. 

3.1 Sequential Rippling 

3.1.1 Sequential Rippling (SR) 
The first algorithm of the subfamily is call Sequential Rippling (or 

SR).  

In this algorithm, vertices are first sorted in descending order of 

the average weight of their adjacent edges (later referred to as the 

weight of a vertex). The vertex with the highest value is chosen to 

be the first seed. One cluster is formed that contains all other 

vertices.  

Subsequently, new seeds are chosen one by one from the ordered 

list of vertices.  

When a new seed is added, vertices are re-assigned to a new 

cluster if they are closer to the new seed than they were to the 

seed of their current cluster. If clustered are reduced to singletons 

during re-assignment, they are deleted. If no vertex is closer to the 

seed, no new cluster is created.  

The algorithm stops when all vertices have been considered. The 

pseudocode of the Sequential Rippling algorithm is given in 

figure 1.  

The worst case complexity of Sequential Rippling algorithm is O 

(N3) because in the worst case the algorithm has to iterate through 

at most N vertices, each time comparing the distance of N vertices 

to at most N centroids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2 Balanced Sequential Rippling (BSR) 
The Second algorithm of the subfamily is called Balanced 

Sequential Rippling (BSR). In order to balance the distribution of 

seeds in the graph, we choose a next seed that is both a reasonable 

centroid for a new cluster (large value for the metric) as well as 

sufficiently far from the previous seeds.  

As in the previous algorithm, the vertex with the highest weight is 

chosen to be the first seed. One cluster is formed that contains all 

other vertices.  

Subsequently, a next seed is chosen that maximizes the ratio of its 

weight to the sum of its similarity to the centroids of existing 

clusters. This is a compromise between weight and similarity. We 

use here the simplest possible formula to achieve such 

compromise. It could clearly be refined and fine-tuned.  

As in the previous algorithm, when a new seed is added, vertices 

are re-assigned to a new cluster if they are closer to the new seed 

than they were to the seed of their current cluster. If clustered are 

reduced to singletons during re-assignment, they are deleted. If no 

vertex is closer to the seed, no new cluster is created. The 

algorithm terminates when there is no re-assignment of vertices.  

The pseudocode of Balanced Sequential Rippling algorithm is 

given in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Given a Graph G = (V, E). V contains vertices, |V| = N. Each vertex 

has a weight which is the average similarity between the vertex and its 

adjacent vertices. E contains edges in G (self-loops removed) with 

similarity as weights.  

Algorithm: SR ( )  

Sort V in order of vertices’ weights 

Take the heaviest vertex v from V 

listCentroid.add (v) 

Reassign all other vertices to v’s cluster 

While (V is not empty)  

     Take the next heaviest vertex v from V 

     Reassign vertices which are more similar to v than to other  

      centroid 

      If there are re-assignments 

          listCentroid.add (v) 

          Reassign singleton clusters to its nearest centroid 

For all i ε listCentroid return i and its associated cluster 

Figure 1. Sequential Rippling Algorithm 

. 

Algorithm: BSR ( ) 

Sort V in order of vertices’ weights  

Take the heaviest vertex v from V 

listCentroid.add (v) 

Reassign all other vertices to v’s cluster 

Reassignment = true 

While (Reassignment and V is not empty) 

     Reassignment = false 

     Take a vertex v ∉ listCentroid from V whose ratio of its weight to  

     the sum of its similarity to existing centroids is the maximum 

     Reassign vertices which are more similar to v than to other centroid 

     If there are re-assignments 

          Reassignment = true 

          listCentroid.add (v) 

          Reassign singleton clusters to its nearest centroid 

For all i ε listCentroid return i and its associated cluster 

Figure 2. Balanced Sequential Rippling Algorithm 

. 



The worst case complexity of Balanced Sequential Rippling 

algorithm is O (N3) because in the worst case the algorithm has to 

iterate through at most N vertices, each time comparing the 

distance of N vertices to at most N centroids.  

3.2 Concurrent Rippling 

3.2.1 Concurrent Rippling (CR) 
The first algorithm of the sub-family is called Concurrent 

Rippling (CR). 

In this algorithm, each vertex is initially marked to be a seed. 

Pairs of vertices and seeds are ordered in ascending order of their 

similarity. 

Iteratively, the next pair is considered. If the vertex is not a seed 

itself, it is assigned to the cluster of the corresponding seed 

(notice that at this point is belongs to at least two clusters). If the 

vertex is a seed itself it is assigned to the cluster of the 

corresponding seed, if and only if its weight is smaller than the 

one of the seed, and the two clusters are merged.  

Making sure that the ripple propagates at equal speed for all seeds 

(with possible and occasional merging of clusters) requires the 

sorting of a list whose size is the square of the number of vertices. 

The algorithm terminates when the centroids no longer change.  

The pseudocode of Concurrent Rippling algorithm is given in 

figure 3. 

Concurrent Rippling algorithm requires O (N2logN) complexity to 

sort the N-1 neighbors of the N vertices. It requires another O 

(N2logN) to sort the N2 number of edges. In the worst case, the 

algorithm has to iterate through all the N2 edges. Hence, in the 

worst case the complexity of the algorithm is O (N2logN).  

3.2.2 Ordered Concurrent Rippling (OCR) 
The second algorithm of the sub-family is called Ordered 

Concurrent Rippling (OCR). In this algorithm, the constant speed 

of rippling is abandoned to be approximated by a simple ordering 

of vertices according to their distance to the candidate seed. The 

method allows not only to improve efficiency (although the worst 

case complexity is the same) but also to favor heavy seeds. 

The key point of this algorithm is that at each time step it tries to 

maximize the average similarity between vertices and their 

centroids. The algorithm does this by processing adjacent vertices 

for each vertex in order of their similarity (from highest to 

lowest). This ensures that at each time step, the best possible 

merger for each vertex v is found. This means that after merging a 

vertex to v with similarity s, we can be sure that we have already 

found and merged all vertices (whose similarity is better than s) to 

v. At each time step therefore, the algorithm assigns vertices to 

their best possible cluster.  

By choosing higher weight vertex as a centroid whenever two 

centroids are adjacent to one another, the algorithm ensures that 

the centroid of a cluster is always the point with the highest 

weight. Since we define a vertex weight as the average similarity 

between the vertex and its adjacent vertices; choosing a centroid 

with higher weight is an approximation to maximizing the average 

similarity between the centroid and its vertices. 

The pseudocode of Ordered Concurrent Rippling algorithm is 

given in figure 4.  

The Ordered Concurrent Rippling algorithm terminates when the 

centroids no longer change. The complexity of the algorithm is O 

(N2logN) to sort the N-1 neighbors of the N vertices. The 

algorithm then iterates at most N2 times. Hence the overall worst 

case complexity of the algorithm is O (N2logN).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each vertex v, v.neighbor is the list of v’s adjacent vertices sorted by 

their similarity to v from highest to lowest. If v is a centroid (i.e. 

v.centroid == 1); v.cluster contains the list of vertices ≠ v assigned to v 

Algorithm: CR ( )  

Sort E in order of the edge weights 

public CentroidChange = true 

index = 0 

While (CentroidChange && index < N-1 && E is not empty) 

     CentroidChange = false 

     For each vertex v, take its edge evw connecting v to its next  

     closest neighbor w; i.e. w = v.neighbor [index] 

     Store these edges in S  

     Find the lowest edge weight in S, say low, and empty S 

     Take all edges from E whose weight >= low 

     Store these edges in S  

     PropagateRipple (S) 

     index ++  

For all i ε V, if i is a centroid, return i and i.cluster 

 

Sub Procedure: PropagateRipple (list S) 

/* This sub procedure is to propagate ripples for all the centroids. If the 

ripple of one centroid touches another, the heavier weight centroid will 

absorb the lighter centroid and its cluster. If the ripple of a centroid 

touches a non-centroid, the non-centroid is assigned to the centroid. A 

non-centroid can be assigned to more than one centroid, allowing 

overlapping between clusters, a generally desirable feature in IR*/ 

 

While (S is not empty)  

     Take the next heaviest edge, say evw, from S 

     If v ∉ x.cluster for all x ε V  

               If w is a centroid, compare v’s weight to w’s weight 

                    If (w.weight > v.weight)   

        add v and v.cluster into w.cluster         

                         Empty v.cluster  

                         If v is a centroid 

                              v.centroid = 0 

                              CentroidChange = true 

                    Else 

        add w and w.cluster into v.cluster         

                         Empty w.cluster 

                         w.centroid = 0 

                         CentroidChange = true 

               Else if w is not a centroid 

                    v.cluster.add (w) 

                    If v is not a centroid 

                         v.centroid = 1 

                         CentroidChange = true 

Figure 3. Concurrent Rippling Algorithm 
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4. PERFORMANCE ANALYSIS 

4.1 Experimental Setup 
In order to evaluate our proposed algorithms, we empirically 

compare, in subsection 4.2.1, the performance our algorithms with 

the constrained algorithms: (1) K-medoids (that is given the 

optimum/correct number of clusters as obtained from the data 

set); (2) Star clustering algorithm, and (3) our improved version 

of Star (i.e. Star Ave) that uses average metric to pick star centers 

[12]. This is to investigate the impact of removing the constraints 

on the number of clusters (K-Medoids) and threshold (Star) on the 

result of clustering.  

We then compare, in subsection 4.2.2, the performance of our 

algorithms with the state-of-the-art unconstrained algorithm, (4) 

Markov Clustering (MCL), varying MCL’s fine-tuning inflation 

parameter.  

We use data from Reuters-21578 [14], TIPSTER–AP [15] and a 

collection of web documents constructed using the Google News 

search engine [16] and referred to as Google.  

The Reuters-21578 collection contains 21,578 documents that 

appeared in Reuter’s newswire in 1987. The documents are 

partitioned into 22 sub-collections, each of the first 21 sub-

collections contain 1000 documents while the last sub-collection 

contains 578 documents. For each sub-collection, we cluster only 

documents that have at least one explicit topic (i.e. documents that 

have some topic categories within its <TOPICS> tags).  

The TIPSTER–AP collection contains AP newswire from the 

TIPSTER collection. For the purpose of our experiments, we have 

partitioned TIPSTER-AP into 2 separate sub-collections.  

Our original collection: Google contains news documents 

obtained from Google News during in December 2006. This 

collection is partitioned into 2 separate sub-collections. The 

documents have been labeled manually.  

In total we have 26 sub-collections. The sub-collections, their 

number of documents and topics/clusters are reported in Table 1. 

By default and unless otherwise specified, we set the value of 

threshold σ to be the average similarity of documents in the given 

collection. We apply the clustering algorithms to each sub-

collection. We present the results averaged for each collection. 

We study effectiveness (recall, r, precision, p, and F1 measure 

[17], F1 = (2 * p * r) / (p + r)), and efficiency in terms of running 

time. In each experiment, for each topic, we return the cluster 

which best approximates the topic. Each topic is mapped to the 

cluster that produces the maximum F1-measure with respect to the 

topic:   

topic (i) = maxj {F1 (i, j)} 

where F1 (i, j) is the F1 measure of the cluster number j with 

respect to the topic number i. The weighted average of F1 

measure for each sub-collection is calculated as follows: 

F1 = Σ (ni/S) * F1 (i, topic (i)); for 0 ≤ i ≤ N 

S = Σ ni; for 0 ≤ i ≤ N 

where N is the number of topics in the sub-collection; ni is the 

number of documents belonging to topic i in the given collection. 

For each sub-collection, we calculate the weighted-average of 

precision, recall and F1-measure produced by each algorithm. We 

then present the average results produced by each algorithm over 

each collection.  

Table 1. Description of collections 

Sub-collection # of 

docs 

# of 

topic 

Sub-collection # of 

docs 

# of 

topic 

reut2-000.sgm 981 48 Reut2-001.sgm 990 41 

reut2-002.sgm 991 38 Reut2-003.sgm 995 46 

reut2-004.sgm 990 42 Reut2-005.sgm 997 50 

reut2-006.sgm 990 38 Reut2-007.sgm 988 44 

reut2-008.sgm 991 42 Reut2-009.sgm 495 24 

reut2-010.sgm 989 39 Reut2-011.sgm 987 42 

reut2-012.sgm 987 50 Reut2-013.sgm 658 35 

reut2-014.sgm 693 34 Reut2-015.sgm 992 45 

reut2-016.sgm 488 34 Reut2-017.sgm 994 61 

reut2-018.sgm 994 50 Reut2-019.sgm 398 24 

reut2-020.sgm 988 28 Reut2-021.sgm 573 24 

Tipster-AP1 1787 47 Tipster-AP2 1721 48 

Google1 1019 15 Google2 1010 14 

4.2 Performance Results and their Discussion 

4.2.1 Apples and Oranges: Comparison with 

Constrained Algorithms 
We first compare the effectiveness and efficiency of our proposed 

algorithms with the ones of a variant of K-medoids, Star, and our 

improved version of Star, Star-ave, in order to determine the 

consequences of combining ideas from both algorithms to 

obtained an unconstrained family not requiring parameters. There 

is, of course, a significant benefit per se in removing the need for 

parameter setting. Yet the subsequent experiments show that this 

can be done with a significant gain in efficiency and, only in the 

some cases, at a minor cost in effectiveness.  

In figure 5, we can see that the effect of combining ideas from 

both K-means and Star in our proposed algorithms improves 

precision for Google data. With the exception of SR, our 

proposed algorithms also improve the F1-value and maintain 

recall. In particular, CR is better than K-medoids, Star and Star-

ave in terms of F1-value. BSR and OCR are better than K-

medoids and Star in terms of F1-value; and are comparable to 

For each vertex v, v.neighbor is the list of v’s adjacent vertices sorted by 

their similarity to v from highest to lowest. If v is a centroid (i.e. 

v.centroid == 1); v.cluster contains the list of vertices ≠ v assigned to v 

Algorithm: OCR ( )  

public CentroidChange = true 

index = 0 

While (CentroidChange && index < N-1) 

     CentroidChange = false 

     For each vertex v, take its edge evw connecting v to its next  

     closest neighbor w; i.e. w = v.neighbor [index] 

     Store these edges in S  

     PropagateRipple (S) 

     index ++  

For all i ε V, if i is a centroid, return i and i.cluster 

 

Figure 4. Ordered Concurrent Rippling Algorithm 

. 



Star-ave. In terms of efficiency (cf. figure 6), SR and BSR is 

comparable to K-medoids. CR and OCR are much faster than K-

medoids, Star and Star-ave. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On Tipster-AP data (cf. figure 7), SR, BSR and OCR again yield 

higher precision than Star and Star-Ave. BSR and OCR yield a 

higher F1-value than Star and Star-Ave. OCR performs the best 

among our proposed algorithms and its effectiveness is 

comparable to that of a K-medoids supplied with the correct 

number of clusters. OCR is also the fastest. It is significantly 

much faster than K-medoids (cf. figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On Reuters data (cf. figure 9), SR and BSR again yield a higher 

precision than K-medoids, Star and Star-Ave. In terms of F1-

value, it is OCR that performs the best among our proposed 

algorithms. OCR performance is better than K-medoids and is 

comparable to that of Star and Star-Ave. In terms of efficiency (cf. 

figure 10), OCR is again much faster than K-medoids, Star and 

Star-Ave. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, BSR and OCR are the most effective among our 

proposed algorithms. BSR achieves higher precision than K-

medoids, Star and Star-Ave on all three data sets. OCR achieves a 

Figure 5. Effectiveness on Google Data 
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Figure 7. Effectiveness on Tipster-AP Data 
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Figure 8. Efficiency on Tipster-AP Data 
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Figure 9. Effectiveness on Reuters Data 
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Figure 10. Efficiency on Reuters Data 
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Figure 6. Efficiency on Google Data 

 



balance between high precision and recall, and obtains 

comparable or higher F1-value than K-medoids, Star and Star-

Ave on the data sets. The sequential algorithm, SR and BSR are 

not efficient. The concurrent algorithms CR and OCR are 

significantly more efficient than all other algorithms.  

In the next section, we compare BSR and OCR, with the 

unconstrained algorithm: Markov Clustering.   

4.2.2 Comparison with Unconstrained Algorithms 
We first illustrate the influence of MCL’s inflation parameter on 

the algorithm’s performance. We vary it between 0.1 and 30.0 (we 

have empirically verified that this range is representative of MCL 

performance on our data sets) and report results for representative 

values.  

As shown in figure 11, at a value of 0.1, the resulting clusters 

have high recall and low precision. As the inflation parameter 

increases, the recall drops and precision improves, resulting in 

higher F1-value. At the other end of the spectrum, at a value of 

30.0, the resulting clusters are back to having high recall and low 

precision again.   

In terms of efficiency (cf. figure 12), as the inflation parameter 

increases, the running time decreases, indicating that MCL is 

more efficient at higher inflation value. From figure 11 and 12, we 

have shown empirically that the choice of inflation value indeed 

affects the effectiveness and efficiency of MCL algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both MCL’s effectiveness and efficiency vary significantly at 

different inflation values. The optimal value seems however to 

always be around 3.0. 

We now compare the performance of our best performing 

algorithms, BSR and OCR, to the performance of MCL algorithm 

at its best inflation value as well as at its minimum and maximum 

inflation values, for each collection. 

From figure 13, with Google data, we can see that the 

effectiveness of BSR and OCR is competitive but not equal to the 

one of MCL at its best inflation value. Yet they are more effective 

than MCL at the minimum and maximum inflation values. We 

also see in figure 14 that both BSR and OCR are significantly 

faster than MCL at all inflation values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

On Tipster-AP data (cf. figure 15), BSR and OCR are slightly less 

effective than MCL at the best inflation value. However, both 

BSR and OCR are more effective than MCL at the minimum and 

maximum inflation values. In terms of efficiency (cf. figure 16), 

OCR is also much faster than MCL at all inflation values.  
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Figure 12. Efficiency of MCL at Different Parameters 
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Figure 13. Effectiveness on Google Data 
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Figure 14. Efficiency on Google Data 
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Figure 11. Effectiveness of MCL at Different Parameters 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same trend is also noticeable on Reuters data (cf. figure 17). 

BSR and OCR are slightly less effective than MCL at its best 

inflation value. However, BSR and OCR are more effective than 

MCL at the minimum and maximum inflation values. In terms of 

efficiency (cf. figure 18), once again, OCR is much faster than 

MCL at all inflation values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, although MCL can be slightly more effective than 

our proposed algorithms at the best settings and around, one of 

our algorithm, OCR, is not only respectably effective but also 

significantly more efficient.  

5. CONCLUSIONS 
We have proposed a family of algorithm for the clustering of 

weighted graphs. Unlike state-of-the-art K-means and Star, the 

algorithms do not require the a priori setting of extrinsic 

parameters. Unlike state-of-the-art MCL, they do not require the a 

priori setting of intrinsic fine tuning parameters. We call them 

unconstrained. 

The algorithms have been devised by spinning the metaphor of 

ripples created by the throwing of stones in a pond. Clusters’ 

seeds are stones and rippling is the iterative assignment of objects 

to clusters.  

We have proposed sequential (in which seeds are chosen one by 

one) and concurrent (in which every vertex is initially a seed) 

versions of the algorithms and variants. 

After a comprehensive comparative performance analysis with 

reference data sets in the domain of document corpora clustering, 

we conclude that, while all our algorithms are competitive, one of 

them, Ordered Concurrent Rippling, yield a very respectable 

effectiveness while being the most efficient. 

We have therefore proposed a novel family of algorithms, called 

Ricochet algorithms, and, in particular, one new effective and 

extremely efficient algorithm for weighted graph clustering, called 

Ordered Concurrent Rippling or OCR 
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