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ABSTRACT
The increasing trend of embedding positioning capabilities
(e.g., GPS) in mobile devices facilitates the widespread use
of Location Based Services. For such applications to suc-
ceed, the privacy and confidentiality issues are of paramount
importance. Existing techniques, like encryption, safeguard
the communication channel from eavesdroppers. Neverthe-
less, the queries themselves may disclose the physical loca-
tion, identity and habits of the user.

In this paper, we present a framework for preserving the
anonymity of users issuing spatial queries to Location Based
Services. We propose transformations based on the well-
established K-anonymity technique to compute exact an-
swers for Range and Nearest Neighbor queries, without re-
vealing sensitive information about the user. Our methods
optimize the entire process of anonymizing the requests and
processing the transformed spatial queries. Extensive ex-
perimental studies suggest that our methods are applicable
to real-life scenarios with numerous mobile users.

1. INTRODUCTION
In the recent years, positioning devices (e.g., GPS) have

gained tremendous popularity. Navigation systems are al-
ready a commodity in the automobile industry and, together
with wireless communications, facilitate exciting new ap-
plications. General Motor’s OnStar system, for example,
supports on-line rerouting to avoid traffic jams and auto-
matically alerts the authorities in case of an accident. More
applications based on the users’ location are expected to
emerge with the arrival of the latest gadgets (e.g., iPAQ
hw6515, Mio A701) which combine the functionality of a
mobile phone, PDA and GPS receiver.

Imagine the following scenario: Bob, who is a sports fan,
uses his GPS enabled mobile phone to ask the query “Find
the nearest fans’ club of Juventus”. This query can be an-
swered by a Location Based Service (LBS ) in a publicly
available web server (e.g., Google Maps). Bob, however,
does not want to disclose to Alice his fondness towards Ju-
ventus, so instead of sending the query to the LBS, he uses
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an anonymizer. He establishes a secure connection (e.g.,
SSL) with the anonymizer which is a trusted server (services
for anonymous web surfing are commonly available nowa-
days). The anonymizer removes the user ID from the query
and forwards it to the LBS; the answer from the LBS is also
routed to Bob through the anonymizer.

Nevertheless, the query itself unintentionally reveals sen-
sitive information. In our example, in order to answer the
Nearest Neighbor (NN ) query, the LBS requires the coordi-
nates of the user and the selection criterion (i.e., Juventus
fans’ club). Since the LBS is not trusted, the communica-
tion channel between the LBS and the anonymizer is not
secure. Alice can eavesdrop this connection and acquire all
the sensitive information except, of course, the identity of
the user. The next step is to relate the coordinates with a
specific user. Alice may choose from a variety of techniques
ranging from physical observation of Bob, to triangulating
his mobile phone’s signal1. She may also employ publicly
available databases2. If, for instance, Bob uses his mobile
phone within his residence, Alice can easily convert the co-
ordinates to a street address (most on-line maps provide
this service) and relate the address to Bob by accessing an
on-line white pages service.

The example demonstrates how the identity and favorite
football team of Bob may be revealed when using a Loca-
tion Based Service, despite the encryption. In practice, users
would be reluctant to access a service that may disclose sen-
sitive information (e.g., corporate, military), or their politi-
cal/religious affiliations and alternative lifestyle. Motivated
by this fact, we develope methods to guarantee privacy by
adapting the well established K-anonymity technique to the
spatial domain.
K-anonymity [12, 14] has been used in statistical data-

bases as well as for publishing census, medical and voting
registration data. A dataset is said to be K-anonymized,
if each record is indistinguishable from at least K−1 other
records with respect to certain identifying attributes. In
the Location Based Services domain, a similar idea appears
in the work of Ref. [5, 6]. Both papers focus on conceal-
ing the location of the user. To achieve this, instead of
reporting the exact coordinates to the LBS, they construct
an Anonymizing Spatial Region (K-ASR) which encloses the
locations of K−1 additional users. These approaches have
several weaknesses: (i) The methods for constructing the K-

1Phone companies can estimate the location of the user within
50-300 meters, as required by the US authorities (E911).
2According to [14], 87% of the US population is uniquely identi-
fied by the combination of 〈ZIP, Gender, DateOfBirth〉.
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Figure 1.1: System architecture

ASR are inefficient, (ii) they assume approximate answers
to the queries, (iii) they do not discuss how queries are ex-
ecuted and, most importantly (iv) anonymization may fail
for some data distributions.

In this paper, we propose a framework which deals with
the entire procedure of anonymization and query processing
for Location Based Services. Our system supports Range
and k-Nearest Neighbor3 (kNN) queries, and retrieves the
exact answers without revealing the location or identity of
the user. We assume that all the users carry a position-
ing device (e.g., GPS) reporting their exact coordinates.
The system includes a trusted anonymizer and a number of
untrusted location servers (LS) providing various Location
Based Services (LBS). The system architecture is shown in
Figure 1.1.

Initially users set up authenticated and encrypted connec-
tions with the anonymizer. Periodically, users report to the
anonymizer their coordinates through the secure connection.
When a user wants to query the LBS, he sends a message
to the anonymizer describing the query type and parame-
ters. Continuing our example, if Bob submits his NN query
through our system, the following steps are performed:

1. At the anonymizer’s side we identify K−1 auxiliary
users in the vicinity of Bob and construct the K-ASR,
where K depends on Bob’s privacy requirements.

2. The input to the LBS is the K-ASR. Therefore, instead
of finding the NN of Bob, the LBS must retrieve the
NN of every point in the K-ASR. By this definition,
all the Juventus fan clubs inside the K-ASR and the
ones which are closest to any point of the perimeter of
the K-ASR, belong to the result G, which is a superset
of Bob’s answer. Notice that G also contains the NN
of each one of the K−1 auxiliary users. Therefore Al-
ice cannot identify Bob as the originator of the query
either from the K-ASR or from the result set G.

3. The entire set G is returned to the anonymizer where
Bob’s answer is extracted. Obviously the size of G,
hence the processing cost (CPU and I/O) at the LBS
and the communication cost between the LBS and the
anonymizer, depend on the choice of the K-ASR.

A näıve solution would pick K−1 auxiliary users and send
K independent NN queries to the LBS. The drawback is that
Alice will learn the exact locations of K users. Assume that
Bob sends subsequent queries in the near future (possibly
with a refined selection criterion). Then Alice can identify
Bob by noticing that a certain location (i.e., Bob’s coordi-
nates) appears in the intersection of the sets of K users. Also
note that we cannot choose a random K-ASR. For instance,
if Bob lives in a rural area, even a relatively large K-ASR
may enclose only his residence, therefore his identity will

3Notice that the symbol k for kNN queries is different from K,
the degree of anonymity.

be compromised. In a densely populated area, on the other
hand, an inappropriate K-ASR could return a large amount
of unnecessary results.

In summary, our contributions are: (i) We propose a
framework for preserving anonymity in LBSs. We also Show
how to implement range and kNN queries in our framework.
(ii) We describe efficient methods for constructing the K-
ASR based on fractals and on Conceptual Partitioning [10].
Our goal is to assemble fast an appropriate K-ASR that
preserves anonymity while minimizing the expected cost at
the LBS and the required bandwidth between the LBS and
the anonymizer. (iii) We develop novel algorithms to com-
pute the kNNs of regions, as opposed to points. (iv) Finally,
we conduct an extensive experimental evaluation of our sys-
tem. The results confirm that our methods minimize the
CPU, I/O and communication cost at the anonymizer and
the LBS; therefore, they are scalable to a large number of
mobile users.

The rest of the paper is organized as follows: Section 2
presents the related work. Next, Section 3 deals with the
construction of the K-ASR at the anonymizer, followed by
Section 4 where we explain the query processing algorithms
at the LBS. The results of our experiments are illustrated
in Section 5. Finally, Section 6 concludes the paper and
presents the directions of our future work.

2. RELATED WORK
K-anonymity was first discussed in relational databases

where published statistical data (e.g., census, medical) should
not be linked to specific persons. Samarati and Sweeney [12,
14] proposed the following definition: A relation satisfies
K-anonymity if every tuple in the relation is indistinguish-
able from at least K−1 other tuples with respect to every
set of quasi-identifier attributes. Quasi-identifiers are sets
of attributes (e.g., date of birth, gender, zip code) which
can be linked to publicly available data to uniquely iden-
tify individuals. Two techniques are used to transform a
relation to a K-anonymized one: Suppression, where some
of the attributes or tuples are removed and generalization,
which involves replacing specific values (e.g., phone num-
ber) with more general ones (e.g., only area code). Both
techniques result to information loss. Ref [2] and Ref [8]
discuss efficient algorithms for anonymizing an entire rela-
tion while preserving as much information as possible. In
Ref [16] the authors consider the case where each individual
requires a different degree K of anonymity, while Aggarwal
[1] shows that anonymizing a high-dimensional relation re-
sults to unacceptable loss of information due to the dimen-
sionality curse. Finally, Machanavajjhala et.al [9] propose
`-diversity, an anonymization method under the assumption
that the attacker has domain-specific knowledge.

Our research is closer to the work of Ref [5] and Ref [6].
The authors of the first paper consider mobile users who
send queries to the anonymizer together with the required
degree K of anonymity and a spatial cloaking range δx, δy.
The system generates a graph where each vertex represents
a user; there is an edge between vertices if one user lies in-
side the spatial cloaking range of the second and vice-versa.
Then the graph is searched for cliques of K users and their
enclosing rectangle is sent to the LBS. Note that the prob-
ability of K users in close proximity to send a query at the
same time, is rather low. Therefore, the system allows the
users to set an additional temporal cloaking interval δt; if a
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clique cannot be found within this interval, the correspond-
ing query is rejected. The paper does not discuss how does
the user select appropriate cloaking ranges, neither considers
query execution.

Ref. [6], on the other hand, assumes that users must re-
port periodically their physical location, and focuses on con-
cealing the exact location without considering queries at all.
The anonymizer indexes the locations of all users in a Quad-
tree [13]. For a user u, it traverses the Quad-tree until it
encounters a quadrant which includes u and less than K−1
additional users. Then it selects the parent of that quad-
rant as the anonymizing region K-ASR. We do not adopt
this method in our system for two reasons: (i) K-ASR may
include many more users than K, rendering query processing
inefficient and (ii) under certain conditions, the location of
the user may be revealed (see Section 3).

Our query processing method is related to the Continuous-
NN algorithm proposed by Tao et.al. [15] to find the kNNs
of line segments. Observe that the algorithm returns the
kNNs of every point of the line segment; therefore the out-
put may contain more than k objects. Continuous-NN is
illustrated in Figure 2.1a, where se is a line segment and
p1...4 are objects. First, p1 is processed and becomes the
NN of the entire line segment. (s, sp1) and (e, ep1) are the
vicinity circles of s and e. Any object outside the vicinity
circles cannot be closer to se than p1; for this reason, object
p2 is ignored. Next (Figure 2.1b), p3 is processed and since
it is inside circle (e, ep1), they calculate the point s1 where
the perpendicular bisector ⊥p1p3 intersects se. Therefore,
the NN of ss1 is p1 while the NN of s1e is p3. The new
vicinity circles around s, s1 and e are calculated and p4 is
ignored since it lies outside them. Continuous-NN can also
be used with an R-Tree [3]: if an intermediate entry E does
not intersect any vicinity circle, the entire subtree of E can
be pruned.

(a) (b)

p2

p1 p3
p4

s e

p2
p1 p3

p4

s es1

p1p3

Figure 2.1: The Continuous-NN algorithm: (a) Af-
ter processing p1. (b) After processing p3

The previous method is extended to handle rectangular
regions in Ref. [7]. The kNNs of a region R include all the
objects inside R plus the kNNs of each of the four sides. The
authors employ the Continuous-NN algorithm to compute
the kNNs of the sides.

3. ANONYMIZER
The anonymizer is a trusted server which acts as a media-

tor between the users and the location server. Users initiate
secure connections with the anonymizer, and periodically re-
port their locations. When a user u needs to access the LS,
he sends the query to the anonymizer. We investigate two
types of queries: (i) the range query Qε(u, ε) which returns
the objects within distance ε of the current location of u and
(ii) the kNN query QkNN (u, k) which returns the k nearest

objects to the location of u. At the anonymizer, the query is
transformed in order to satisfy the anonymization criterion,
and is forwarded to the LS. The results from the LS are a
superset of the user’s answer. The anonymizer extracts the
exact answer, and returns it to the user.

A user u who issues a location-dependent query is consid-
ered to be K-anonymous if his location is indistinguishable
from the location of K−1 other users [6]. Formally:

Definition 1. Let H be a set of K distinct user entities
with locations enclosed in the arbitrary Anonymization Spa-
tial Region K-ASR. Then a user u ∈ H is said to possess
K-anonymity with respect to K-ASR if the probability P of
distinguishing u among the other users in H does not exceed
1/K. We refer to K as the required degree of anonymity.

Although the definition of K-anonymity applies to any
shape of the K-ASR, it is likely that only convex regular
shapes will present practical interest. We currently consider
two different types of enclosing K-ASR: minimum bound-
ing rectangles R and minimum bounding circles C. The
shape affects the area and perimeter of the K-ASR and con-
sequently (i) the processing cost (CPU and I/O) at the LS,
(ii) the number of results returned by the LS and thus, the
required bandwidth between the LS and the anonymizer and
(iii) the CPU cost at the anonymizer due to post-processing
of the results. Usually, a rectangular shape R is preferred,
since it minimizes all the above costs. On the other hand,
there are cases where a circular shape C minimizes the area
and perimeter of the K-ASR (refer to the SS-Tree paper [19]
for a detailed analysis). We show in our experiments that
there is a tradeoff of using C: while the bandwidth (between
the LS and the anonymizer) and the post-processing cost at
the anonymizer decrease, the CPU cost at the LS increases.

The degree of anonymity increases with K; on the other
hand, the size of the resulting K-ASR, hence the processing
cost, will also increase with K. This is because the K-ASR
must be expanded to enclose K users. Given a target de-
gree of anonymity K, an ideal K-ASR construction technique
should minimize the area and perimeter of the K-ASR.

We stress that an ideal anonymization technique that is
able to guarantee the anonymity of the query source, must
employ grouping of users into K-ASRs with fixed user com-
position. The fixed composition of K-ASR is a sufficient con-
dition to guarantee K-anonymity, since the group of users
contained in the K-ASR is perceived from the outside as a
single entity, with no possibility to distinguish between indi-
vidual users. Anonymization techniques that do not employ
K-ASRs with fixed user composition cannot offer provable
anonymity guarantees for all possible user location distrib-
utions, but they can still provide strong anonymization fea-
tures. In Section 3.3 we introduce a location K-anonymity, a
meaningful criterion for evaluating anonymity of techniques
that do not employ K-ASRs with fixed user composition.

An optimal K-ASR construction algorithm would par-
tition the user population into static buckets of K users,
such that the sizes of the associated K-ASRs are minimized.
Every query from users that reside in the same bucket will
have the same associated K-ASR, therefore no matter which
user from the bucket generates a query, he cannot be distin-
guished from others in the same bucket (i.e., the probability
of a specific user issuing a query is 1/K). Figure 3.1 shows
an example. Regardless of which user in bucket B1 issues a
query, the K-ASR which contains the users of bucket B1 will

3



Figure 3.1: Anonymization with static K-ASR, K=5

be sent to the LS; the same holds for bucket B2. Even if the
frequency of queries varies for different users, an attacker
will not be able to detect which user issued a particular
query.

There are three drawbacks with this approach: (i) Calcu-
lating the optimal partitioning is an NP-Hard problem [8].
(ii) The partitioning is based on a fixed K. If the degree
of anonymization required by a user is larger that K, the
request cannot be satisfied. A possible work-around would
be to choose a large enough value of K to satisfy the most
demanding user. However, this would increase the average
size of the K-ASRs, thus affecting severely the processing
cost. Finally (iii) our setting assumes mobile users, there-
fore static partitioning is not applicable.

In the following, we consider methods for on-the-fly con-
struction of K-ASR. First, we explain the drawbacks of ex-
isting approaches. Then, we present two novel K-ASR con-
struction methods: (i) hilbASR is based on the Hilbert
space filling curve and guarantees that the probability of
identifying a user is less than 1/K and (ii) nnASR which
improves significantly the processing cost by relaxing the
anonymization requirement.

3.1 Drawbacks of Existing Approaches
Current spatial anonymization techniques [6] attempt to

build the K-ASR of a given location using the Quadtree [13]
space-partitioning technique4. When user u issues a query,
the Quadtree is traversed until a quadrant which contains
u and less than K−1 other users is found. The parent of
that quadrant is returned as the K-ASR. We refer to this
technique as quadASR.

However, this technique fails to meet the anonymization
criterion for some data distributions. Consider the example
of Figure 3.2. The data space range is (0, 4) × (0, 4). Since
a PR-Quadtree is used, quadrants corresponding to nodes
with equal depths have equal sizes. Each point resides in its
own quadrant, and quadrants are identified by lower-left and
upper-right point coordinates: qi = ((xll, yll), (xur, yur)).
When any of the users u1, u2 or u3 issues a query with
degree of anonymity K= 3, the quadrant q2 = ((0, 2), (2, 4))
which encloses u1...3 will be returned as the K-ASR. On the
other hand, when the isolated user u4 issues a query with
K= 3, the larger quadrant q1 = ((0, 0), (4, 4)) is returned,
which includes all points. Note that if 1 <K≤ 3, the only
reason to return quadrant q1 is that u4 issued a query. If an
attacker knows the locations of all users, he will be able to
pinpoint u4 as the query origin.

A second drawback of this technique is that due to the
non-uniform distribution of user locations, the number of

4Although [6] use the Point-Region (PR) Quadtree, the discussion
applies to other versions of the Quadtree.
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Figure 3.2: Limitations of quadASR, K=3

users enclosed by a K-ASR may grow much larger than
K. This corresponds to larger spatial extend of the K-ASR
hence higher processing cost.

Observe that the same problems also exist if, instead of
the Quadtree, we use data partitioning spatial indices such
as R-Trees. Next, we propose two methods for constructing
the K-ASR, hilbASR and nnASR, which overcome the above
drawbacks.

3.2 The hilbASR Anonymization Algorithm
We construct Hilbert K-ASRs by grouping users together

into K-sized buckets based on the Hilbert [4] ordering of user
locations. The hilbASR algorithm guarantees that the prob-
ability of identifying a user in a bucket is always bounded
by 1/K, since it uses a fixed bucket paritioning scheme.

The Hilbert space filling curve transforms the 2D coordi-
nates of each user into an 1D value H(u). With high prob-
ability, if two points are in close proximity in the 2D space,
they will also be close in the 1D transformation. We sort the
Hilbert values of all users and split them in buckets. Each
Hilbert bucket has the same number of users5, K, except for
the last one which is enlarged in order to contain at least K
users.

When user u issues a query Q, we calculate the Hilbert
value H(u) and determine ranku which is the position of
H(u) in the sorted sequence of all user locations. We asso-
ciate the query Q with the K-bucket that starts at the index
start = ranku − (ranku mod K). Figure 3.3 illustrates an
example of determining the buckets for K= 3 and K= 4. For
K= 3 for instance, the same bucket B3

2 , is associated to all
queries originating at users with Hilbert values 35, 47 or 52.
Similarly, for K= 4, bucket B4

1 is associated to all queries
originating at 11, 23, 27 and 35.

Figure 3.3: hilbASR, K=3 and K=4

As mentioned earlier, K-ASR construction techniques that
use fixed K-buckets suffer from lack of flexibility in accom-

5Note that even if the Hilbert bucket contains K users, the cor-
responding bounding rectangle R or circle C may enclose more
than K users.
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modating queries with varying anonymization requirements.
Our algorithm overcomes this limitation by not physically
storing the K-buckets. Instead, a balanced sorting tree is
maintained, whose key corresponds to the Hilbert values
of users locations. The start and end indices for a query
originating at user u with degree of anonymization Ku are
determined by performing a search for u and computing the
bucket boundaries as:

start =ranku − (ranku mod Ku)

end =start +Ku − 1

For the last bucket, the start value is adjusted to start−Ku.
To support efficient range search between two given po-

sitions in the tree, we use an annotated tree, where each
node stores the number of nodes in its left subtree; the idea
is similar to the aR-Tree [11]. The data structure we use
is scalable, since search, insert and delete operation all ex-
hibit O(logN) complexity, where N is the number of indexed
users; therefore, our technique is applicable to large numbers
of mobile users who update their position frequently. The re-
quired degree of anonymity K may vary for different queries,
therefore hilbASR can seamlessly accommodate users with
diverse anonymization requirements. Note that, while our
previous discussion assumes a main memory index, the tech-
nique can be easily extended to secondary memory by using
B+-trees.

3.3 The nnASR Anonymization Algorithm
The previous algorithm, hilbASR, guarantees that the

anonymization criterion is satisfied. However, the Hilbert
transformation may exhibit poor locality for those locations
corresponding to the Hilbert curve “turning” points. There-
fore the area and perimeter of the corresponding K-ASR is
larger, leading to an increase in processing cost.

Recall that finding the optimal K-ASR is NP-Hard. Here,
we attempt to minimize the average size of the K-ASR by
considering the users which are close to the querying user
u. A näıve technique works as follows: Find the K−1 users
closest to u and let the K-ASR be the bounding rectangle R
or circle C which encloses u and his K−1 neighbors. Never-
theless, this näıve K-ASR construction method is likely to
disclose the location of u.

Let indexu be the the index of u in the sequence of users
enclosed by the K-ASR sorted in ascending order accord-
ing to distance from the center of K-ASR; for example, if
indexu = 1 then u is the closest user to the K-ASR cen-
ter. We propose the following anonymity metric for K-ASR-
generation techniques:

Definition 2 (Location K-anonymity). We consider
the location of u to be indistinguishable from the location of
the other users in K-ASR if the probability

P [indexu = i] ≤ 1

K , ∀i ∈ {1, . . . ,K} (1)

Given an K-ASR and the location of user u within the K-
ASR, there are a variety of methods to characterize indistin-
guishability, such as geometrical simmilarity, pattern match-
ing, etc. However, we believe that our proposed distance-
centric location K-anonymity is particularly representative
for the area of application of LBS.

In Figure 3.4 we show the distribution of the positions
inside K-ASR of the querying user u, if we use the näıve
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Figure 3.4: Distance from bounding box center mea-
sured as P [indexu = i] for the näıve method, K= 10.
The points above the dashed line violate Equation 1

method discussed above (for details of the experimental set-
ting, refer to Section 5). For an overwhelming number of
cases, u is closest to the center of K-ASR; hence an at-
tacker may easily pinpoint u. The dashed line in Figure 3.4
corresponds to the “flat” index distribution obtained by an
ideal anonymization technique, which would always gener-
ate K-ASRs with exactly K users, and the probability of the
querying user having index i is exactly 1/K, ∀i = 1, 2, ..,K.
Note that the probability of the index i being larger than K
is non-zero for the näıve nearest-neighbor method, since the
generated K-ASR may contain more than K users.

Here, we propose a randomized version of the näıve me-
thod, called nnASR. Our algorithm exhibits the good local-
ity properties of the näıve method, without its drawbacks.
nnASR works as follows: Given the location of user u, it
first determines the set S containing u and the users who
are the K−1 nearest neighbors of u. From S, the algorithm
selects a random u′; therefore the probability of selecting
the initial user u is 1/K. Then nnASR computes the set S′

which contains u′ and the users who are the K−1 nearest
neighbors of u′. Next, we obtain S′′ = S′∪{u}. This step is
essential, since u is not necessarily a K−1 nearest neighbor
of u′. Finally, the K-ASR is the bounding rectangle R or
circle C which encloses the users of S′′. Figure 3.5 shows
the pseudocode for the algorithm.

nnASR(u, K)
1. S := {u} ∪ {ui|ui is one of the K− 1 NN of u}
2. Randomly choose u′ ∈ S
3. S′ := {u′} ∪ {uj |uj is one of the K− 1 NN of u′}
4. S′′ := S′ ∪ {u}
5. return K-ASR of S′′

Figure 3.5: The nnASR algorithm

We employ the Conceptual Partitioning (CP) algorithm
[10] to compute efficiently the sets S and S′. CP uses a
regular grid to partition the space around u and then follows
a branch-and-bound approach to find the nearest neighbors
of u. Intuitively, CP is similar to a 2D plain sweep, where
the sweep line is a circle centered at u.

The advantage of nnASR is that the average size of the
K-ASR is smaller that other anonymization techniques, thus
reducing the cost at both the anonymizer and the LS. On
the other hand, nnASR does not compute fixed K-buckets,
meaning that if user u′ is included in the K-ASR of a query
issued by user u, u will not necessarily be included in the
K-ASR generated for u′. This may cause anonymity prob-
lems in the presence of outliers. Figure 3.6 captures such a
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Figure 3.6: nnASR behavior in the presence of out-
liers, K=3

scenario. When user u1 issues a query with anonymization
degree K= 3, the algorithm will determine its two nearest
neighbors, u3 and u10. Suppose u3 is chosen at random from
u1’s neighbors, and its two nearest neighbors u7 and u8 are
found. The resulting K-ASR B1 will include u1, u3, u7 and
u8. However, if a query with K= 3 originates at any of the
users other than u1, the resulting K-ASR will only contain
a set of the clustered locations of users u2...u10. Obviously,
it is easy for an attacker to identify the queries originating
at u1, as the resulting K-ASR will be much larger than all
other K-ASRs, regardless of which of u1’s neighbor is chosen
at random.

Summarizing, the Quadtree based algorithm (Section 3.1)
exhibits high processing cost and may fail to provide suf-
ficient anonymity for outlier users. nnASR has the same
anonymization problem for outliers, but it generates much
smaller K-ASRs, therefore decreasing significantly the query
processing cost. Finally hilbASR generates larger K-ASRs
than nnASR, but it is likely to generate smaller K-ASRs
than quadASR. However, hilbASR guarantees that the ano-
nymization criterion is satisfied in all cases.

3.4 Query Formulation
So far, we discussed how to generate the anonymizing re-

gion K-ASR. This process is orthogonal to the query type.
After the anonymizer selects the K-ASR, the query is for-
warded to the location server. Recall that we support two
types of queries:

1. The range query Qε(u, ε) returns the objects (e.g.,
points of interest from the LS) within distance ε of the
current location of u. For this query, the anonymizer
sends to the LS the K-ASR and the range ε. The LS
returns all the objects within the K-ASR and those
which are within range ε from the boundaries of the
K-ASR. Then the anonymizer performs a simple filter-
ing and returns to the user the exact answer.

2. The kNN query QkNN (u, k), returns the k nearest ob-
jects to the location of u. The anonymizer sends to
the LS the K-ASR and the parameter k (recall that k
should not be confused with the degree of anonymity
K). The LS returns the objects which are within the
K-ASR and those which are the kNNs of any point on
the boundary of K-ASR. Then the anonymizer finds
the actual kNNs of u by a simple linear scan of the
result.

With respect to range queries, we employ an additional
optimization that aims at reducing query cost. Instead of
querying for a range ε around the K-ASR, we use a smaller
radius if part of the original query is enclosed in the K-ASR.
Consider the example presented in Figure 3.7: user u is is-
suing a range query Qε(u, ε). The K-ASR R obtained by
the anonymization algorithm already includes entirely the

u3u1
u2

u4

�

�

�

Figure 3.7: Formulation of range queries at the
anonymizer side

queried region. Therefore, we can query the LS for ε = 0,
i.e., return only objects within the K-ASR. Since the anony-
mity of a user location is guaranteed by the anonymization
algorithm within the boundaries of the K-ASR, no informa-
tion that may pinpoint user location is disclosed by setting
ε = 0. Similarly, if the K-ASR does not completely include
the range query, then we will formulate the query with the
minimum ε value such that the area requested by the user
is included in the query (note that the K-ASR is enlarged
in all directions to preserve anonymity). This value may be
considerably smaller than the user query radius, hence the
cost of the query may be significantly reduced.

Recall that the shape of the K-ASR may be an axis-
parallel rectangle R or a circle6 C. There are several cost
models [19] to predict which shape will perform better at
the LS. In our implementation, for each query, we select
the shape which has the smallest area (SA), since our ex-
periments shown that this metric performs better in most
of the cases. Other parameters to consider, would include
the perimeter of each shape, the value of k, etc. A detailed
study is outside the scope of this paper.

4. LOCATION SERVER
The Location Server (LS) receives the query from the

anonymizer, processes it and sends the results back to the
anonymizer. In our implementation, the data in the LS are
indexed by an R*-Tree [3]; our methods, however, are inde-
pendent of the index structure. As we mentioned, we are
interested in two types of queries:

1. Range queries: The LS receives the query range which
is either an axis-parallel rectangle R or a circle C. Pro-
cessing is straight-forward; the R-tree is traversed from
the root to the leaves and any object inside R (or C)
is returned.

2. kNN queries: This case is more complex, since the LS
must find the kNNs of the entire range. The rest of
this section describes the RkNN and CkNN algorithms
which compute the kNNs of rectangular and circular
ranges, respectively.

4.1 RkNN - Rectangular RangekNN
We adopt the algorithm from Ref. [7] to compute the

kNNs of an axis-parallel rectangle R; we call this algorithm
RkNN. Intuitively, the result set consists of (i) all the ob-
jects which are inside R and (ii) the kNNs of each of the
four sides (refer to [7] for the proof).

Figure 4.1 presents an example where the query asks for
the 1-NNs of Rabcd. p1 and p2 are included in the result
because they are the 1-NN of side ad and bc, respectively.

6To compute the minimum enclosing circle of the users, we use
the randomized incremental algorithm of Welzl [18] with expected
linear time (to the number of users in the K-ASR).
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Observe that side ab has two 1-NNs: The 1-NN of segment
as0 is p1, while that of s0b is p2. This is because the distance
|p1s0| is equal to |s0p2|. Similarly, the 1-NNs of ds1 and s1c
are p1 and p2, respectively. The final set of 1-NNs of R is
{p1, p2}; object p3 is not included because all the points in
the perimeter of R are closer to either p1 or p2. Note that if
there were any objects inside R, they would also be included
in the result.

p1

s0

s1p3

p2

a b

cd

Figure 4.1: The 1-NNs of Rabcd are p1 and p2

The RkNN algorithm employs the Continuous-NN algo-
rithm from Ref. [15] (refer to Section 2) to find the kNNs of
each of the four sides. A näıve implementation of RkNN re-
quires five traversals of the R-tree: one for each execution of
Continuous-NN (for each of the sides) plus one traversal to
retrieve the objects inside R. A straight-forward optimiza-
tion is to combine the five subqueries in a single traversal.

4.2 CkNN - Circular Range kNN
The set of kNNs of a circular range C also consists of two

subsets of objects: (i) all the objects which are inside C and
(ii) the kNNs of the circumference of C. In the example
of Figure 4.2, let s0, s1 be two points on C, such that the
distance |p1s0| = |s0p2| and |p1s1| = |s1p2|. Assuming that
the center c of C is the origin of the coordinate system, the
polar coordinates of s0 are (r, ŝ0), where r is the radius of C
and ŝ0 is the (anti-clockwise) angle between the x-axis and
the vector ~cs0. Similarly, the polar coordinates of s1 are
(r, ŝ1). The 1-NN of every point in the arc [ŝ0, ŝ1] is p1; we
denote this as:

[ŝ0, ŝ1] → p1

Likewise [2π− ŝ1, ŝ0] → p2, since any point in the arc [2π−
ŝ1, ŝ0] is closer to p2 than to any other object. Therefore,
the set of 1-NNs of C is {p1, p2}. Note that p3 is not in this
set, even though it is closer to C than p2; this is because p3

is covered by p1.

p1

s0

s1p3

p2
c rs0

s1

Figure 4.2: The 1-NNs of Cc,r are p1 and p2

Here we describe our algorithm, called CkNN-Outer to
compute the kNNs of the circumference of C. Conceptually
CkNN-Outer is similar to Continuous-NN [15]. However,
some of the properties of line segments which are used in
Continuous-NN (e.g., continuity, defined in [15]) do not hold
for 2-D shapes, rendering the problem more complex.

Let D = {p0, p1, . . . , pn} be the set of all objects. CkNN-
Outer maintains a list SL of mappings [a, b] → pi, where a, b
are angles defining an arc on C, 0 ≤ a < b ≤ 2π, and pi ∈ D

is the object which is closest to every point of arc [a, b] than
any other object pj ∈ D. Let p1 ∈ D be the first object
encountered by the algorithm (see Figure 4.3a). Since SL
is initially empty, p1 is closest to the entire C. Without loss
of generality, we pick two points s0, s

′
0, where ŝ0 = 0 and

ŝ′0 = 2π (i.e., they are the same point), and add the mapping

[ŝ0, ŝ′0] → p1 in SL.

p1

s0
s'0

c

p1

s0
s'0

c

p2

(a) (b)

r

s'0

p1p2

Figure 4.3: ⊥p1p2 does not intersect C

Let p2 be the next object processed by CkNN-Outer. The
algorithm traverses SL and compares p2 with all existing

mappings; in our example, the only mapping is [ŝ0, ŝ′0] → p1.
Let⊥p1p2 be the perpendicular bisector of line segment p1p2.
There are two case: (i) ⊥p1p2 does not intersect C (or is tan-
gent to C) and (ii) ⊥p1p2 intersects C in two points. Fig-
ure 4.3b presents an example of the first case. By definition,
any point on the right-hand side of ⊥p1p2, is closer to p1.
Therefore, the entire C is closer to p1 than to p2. Since
the mapping to p1 already exists, there is no change in SL.
Furthermore, even if there were more mappings inside SL, it
would not be necessary to consider p2 any further, since p1

covers p2. On the other hand, if p2 was at the right-hand side
(and p1 on the left), then p2 would be closer to C than p1.

In this case, the algorithm would remove the [ŝ0, ŝ′0] → p1

mapping from SL and add a new one [ŝ0, ŝ′0] → p2.

p1

s1

s'1

s'1s1

(a) (b)
p2

p3

s2

s'2

s3

s'3

p3

p1

p2

s2
s'2

s3
s'3

Figure 4.4: ⊥p1p2 intersects C

In the next example (Figure 4.4a), p1 and p2 have already
been processed. ⊥p1p2 intersects C in two points, s1 and s′1.
Since all points on the left of ⊥p1p2 are closer to p1 and those
on the right are closer to p2, there are two mappings in SL:

[ŝ1, ŝ′1] → p1 and [ŝ′1, ŝ1] → p2. Let p3 be the next object to
be processed. p3 is compared against the existing mappings.

For the first one (i.e., [ŝ1, ŝ′1] → p1), ⊥p1p3 intersects C in

s2 and s′2. Note that ŝ′2 6∈ [ŝ1, ŝ′1], so it is not considered

further. On the other hand, ŝ2 ∈ [ŝ1, ŝ′1] and p3 is closer to
ŝ1 than p1. Therefore, the arc is split into two parts [ŝ1, ŝ2]

and [ŝ2, ŝ′1], which are assigned to p3 and p1, respectively.

Similarly, for the second mapping (i.e., [ŝ′1, ŝ1] → p2), ⊥p2p3

intersects C in s3, s
′
3. Only ŝ3 ∈ [ŝ′1, ŝ1], so the arc is split

into [ŝ′1, ŝ3] and [ŝ3, ŝ1], which are assigned to p2 and p3,
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CkNN-Outer(D: the set of objects)
1. for every object p ∈ D do
2. if SL = ∅ then SL := {[0, 2π] → p}
3. else
4. for every interval ϕ ≡ [a, b] → q, ϕ ∈ SL do
5. if ⊥pq∩ C= ∅ or ⊥pq is tangent to C then
6. if |pC| < |qC| then SL := (SL− ϕ) ∪ {[a, b] → p}
7. else break
8. else
9. let s0, s1 be two points such that ⊥pq∩ C= {s0, s1}

// Let ŝ0 < ŝ1 (the other case is symmetric)
10. if ŝ0 ∈ [a, b] and ŝ1 ∈ [a, b] then
11. if |pCa| < |qCa| then SL := (SL− ϕ)∪

∪{[a, ŝ0] → p, [ŝ0, ŝ1] → q, [ŝ1, b] → p}
12. else SL := (SL− ϕ)∪

∪{[a, ŝ0] → q, [ŝ0, ŝ1] → p, [ŝ1, b] → q}
13. else if ŝ0 ∈ [a, b] or ŝ1 ∈ [a, b] then

// Let only ŝ0 ∈ [a, b] (ŝ1 ∈ [a, b] is symmetric)
14. if |pCa| < |qCa| then
15. SL := (SL− ϕ) ∪ {[a, ŝ0] → p, [ŝ0, b] → q}
16. else SL := (SL− ϕ) ∪ {[a, ŝ0] → q, [ŝ0, b] → p}
17. else if |pCa| < |qCa| then
18. SL := (SL− ϕ) ∪ {[a, b] → p}
19. return SL

CkNN(D: the set of objects)
1. kNN := {p : p ∈ D ∧ p is inside C}
2. call CkNN-Outer(D)
3. kNN := kNN ∪ {p : p belongs to a mapping of SL}
4. return kNN

Figure 4.5: Find the 1-NNs of a circular range C

respectively. After updating, SL = {[ŝ2, ŝ′1] → p1, [ŝ′1, ŝ3] →
p2, [ŝ3, ŝ1] → p3, [ŝ1, ŝ2] → p3}. The last two mappings can
be combined (i.e., [ŝ3, ŝ2] → p3) since they are consecutive
and are mapped to the same object.

Figure 4.4b presents another example. Again, p1 and p2

have already been processed, so SL = {[ŝ′1, ŝ1] → p1, [ŝ1, ŝ′1] →
p2}. Next, p3 is compared to the first mapping of SL. Note

that ⊥p1p3 intersects C in s′2, s2 and both ŝ′2, ŝ2 ∈ [ŝ′1, ŝ1].
Therefore, the arc is split in three parts and since p3 is closer

to s′1 than p1 the corresponding mappings are: [ŝ′1, ŝ
′
2] →

p3, [ŝ′2, ŝ2] → p1, [ŝ2, ŝ1] → p3. Similarly, after considering

⊥p2p3, [ŝ1, ŝ′1] is also split into three parts. Finally, af-

ter combining the consecutive mappings, SL = {[ŝ′2, ŝ2] →
p1, [ŝ2, ŝ3] → p3, [ŝ3, ŝ′3] → p2, [ŝ′3, ŝ

′
2] → p3}.

The CkNN algorithm is shown in Figure 4.5. For simplic-
ity, the presented pseudocode computes only the 1-NNs. To
compute the kNNs, instead of a single object, the arcs in our
implementation are mapped to an ordered list of k objects:
[a, b] → (p1, . . . , pk). The procedure is then called for each
position i (1 ≤ i ≤ k) of the ordered list. In the ith call, if
an object p ∈ D already exists in position j (1 ≤ j ≤ i− 1),
then p is not considered for that mapping. Also, if an arc is
split, the objects in positions 1 . . . i− 1 are not altered. The
worst case complexity of CkNN is O(|D|k), since any object
may cause an arc split. In practice, however, the algorithm
is faster, because the objects which are far away from C do
not cause splits.

4.3 R-trees andCkNN
In order to use the CkNN algorithm with an R-tree, we

must employ a branch-and-bound heuristic. The process is
similar to the Continuous-NN case: starting from the root,
the R-tree is traversed either in Depth-First or in Best-First
manner. When a leaf entry (i.e., object) p is encountered,

the CkNN algorithm is used to check whether p is closer to
C than any of the objects in the current mappings (i.e., p
is a qualifying object) and updates SL accordingly. For an
intermediate entry E we avoid visiting its subtree if it is
impossible to contain any qualifying object.

Figure 4.6 presents an example where p1 and p2 are the
current 1-NNs of C. Next an entry E from an intermediate
node of the R-tree is encountered. We observe the following:

Lemma 1. Let MBRE be an axis-parallel MBR and let st
be the side which is closest to a circle C. If st does not con-
tain any of the kNNs of C, then the MBRE cannot contain
any kNN.

p1

p2
d

e

c

f

E
r

Figure 4.6: Check if E may contain qualifying ob-
jects

The proof is straight-forward, since any point in the MBR
will be further away from C than the closest point on st. In
our example, the right side st of E is closer to C. Assume
that there is a point d on that side, such that the perpen-
dicular bisector ⊥dp1 is tangent to C, and let e = ⊥dp1∩C.
Then we get the following system of equations7:8><>:|ce| = r

|p1e| = |de|
|p1e|2 − |p1f |2 = |cf |2 − r2

(2)

The first equation is derived from the fact that e ∈C, while
the second one is because the distance from any point on
⊥dp1 to d and p1 is equal. The third equation results from
the application of the pythagorean theorem on the orthogo-
nal triangles p1fe and fec which have a common side ef . Af-
ter substituting the points with their cartesian coordinates,

we get the following system (note that xf =
xd+xp1

2
, yf =

yd+yp1
2

, since f is the middle of dp1):8>>>><>>>>:
(xe − xc)

2 + (ye − yc)
2 = r2

(xd − xe)
2 + (yd − ye)

2 = (xp1 − xe)
2 + (yp1 − ye)

2

(xp1 − xe)
2 + (yp1 − ye)

2 − (xd−xp1)2+(yd−yp1)2

4
=

=
�

xd+xp1
2

− xc

�2

+
�

yd+yp1
2

− yc

�2

− r2

There are three equations and three unknowns: xe, ye, yd. If
there is a real solution of this system, under the condition
(xd, yd) ∈ st, then there may be a qualifying object inside
the subtree of E. Else, if all solutions are imaginary or the
condition is not satisfied, all objects in E are further away
from C than the current objects in SL, so the subtree under
E can be pruned.

7Obviously, if a different side of E is closer to C, the equations
are modified accordingly.
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Solving this system, however, has two drawbacks: (i) the
process is slow (in the order of 100’s of msec in an average
computer); given that an entry E must be checked against
many objects, the running time is prohibitively long and (ii)
due to the complexity of the calculations and the possibility
of rounding errors, there is a high risk of a false-miss. There-
fore, in our implementation, we use the RkNN algorithm to
traverse the R-tree and employ the CkNN algorithm only
for the objects at the leaf-level. Our strategy is based on
the following observation:

Lemma 2. Let C be a circle, MER the maximum en-
closed axis-parallel rectangle of C and S the set of kNNs
of MER’s perimeter. Let pi be an object, such that pi is
inside MER and pi 6∈ S. Then pi cannot be a kNN for any
point of C.

Proof. Assume the lemma does not hold. Figure 4.7
shows an example where p2 ∈ MER and p2 6∈ S. Assume
that p2 is the NN of point e ∈ C. Let d be the point where
the line segment p2e intersects the perimeter of MER, and
p1 be the object which is the NN of d. Because of our
assumption: |p2e| < |p1e|. Using the triangular inequality,
we get: |p2d|+ |de| < |p1d|+ |de| ⇒ |p2d| < |p1d| which is a
contradiction, since p1 is the NN of d. Therefore, the lemma
holds.

p1 d

e

p2

MBR of C

MER of C

C

Figure 4.7: The MBR and the MER of C

We construct the Minimum Bounding Rectangle8 MBR
and the Maximum Enclosed Rectangle MER of C (the side
length of MER is

√
2r). Conceptually, our implementation

works in three steps:

1. Use the RkNN algorithm to find the set S1 of kNNs of
MBR (including all the objects inside MBR). Recall
that S1 is a superset of the kNNs of any point inside
MBR; therefore, it contains all the kNNs of C.

2. Use RkNN to find the set S2 of kNNs of only the
perimeter of MER. Use Lemma 2 and S2 to prune
objects from S1.

3. Call the CkNN algorithm with the objects remaining
in S1.

In practice, these steps can be combined. In a single tra-
versal of the R-tree, steps (1) and (2) can be used at the
intermediate levels to prune the tree and step (3) is applied
on the leaf-level objects.

8Note that for a set of users u1...n, the MBR of C is not the same
as their corresponding anonymizing rectangle R.
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Figure 5.8: Anonymity analysis for hilbASR,
nnASR and quadASR, K = 50

5. EXPERIMENTAL EVALUATION
In this section, we present an extensive performance evalu-

ation of our anonymization techniques and the correspond-
ing query processing algorithms. We implemented proto-
types for both the anonymizer and the location server. At
the anonymyzer side, we used the Conceptual Partitioning
code from Ref. [10] to implement nnASR. At the location
server, we used the R*-tree and the Continuous-NN code
from Ref. [15]. The code is written in C++ and the experi-
ments were run on a Linux cluster consisting of Intel Xeon
2.8GHz machines with 2.5GB of RAM.

We used two real datasets to evaluate the performance of
our system: the ST set and the NA set [17]. The ST dataset
represents the public road system in California, and consists
of 2.2M road segments. The NA dataset consists of 560,000
locations on the north-American continent. For both sets,
the dataspace is a rectangle with coordinates [0, 10000] ×
[0, 10000]. We used these datasets to generate workloads for
both user locations and landmarks/points of interest.

Performance is measured in terms of CPU time, I/O time
and communication cost. At the anonymizer we employed
main-memory structures, therefore we measure only the CPU
time. At the location server, we use an R*-Tree and mea-
sure the total time which consists of the I/O and CPU time;
in all experiments we used a cache with size equal to 10%
of the corresponding R*-Tree. The communication cost is
measured in terms of number of results sent back from the
LS to the anonymizer.

5.1 Anonymity Analysis
In this section, we evaluate the anonymization capabili-

ties of the three discussed techniques: hilbASR, nnASR and
quadASR. We consider a workload of 1000 user queries, orig-
inating at a set of users randomly chosen from the ST data
set. The requested degree of anonymization is K = 50. As a
measure of anonymity strength, we consider the metric in-
troduced in Section 3: the rank of the querying user location
in terms of distance from the K-ASR center, compared to
the other users in the K-ASR.

Figure 5.8 shows the probability Pr of the querying user to
have the rank r in terms of distance from the K-ASR center.
Note that Pr can be non-zero for values of r larger than K =
50, since there may be more than K users in a K-ASR. The
dashed line corresponds to the distribution of ranks obtained
by the ideal anonymization technique: a “flat” distribution
in the interval [1, K]. We observe that nnASR achieves the
requested anonymization degree, as Pr never exceeds the
threshold value 1/K. nnASR is sub-optimal in terms of K-
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Figure 5.9: Area and perimeter for rectangular K-
ASR, varying K, 50000 users

ASR size, in the sense that the resulting K-ASR may enclose
more than K users, but only by a small margin. However, it
is superior to hilbASR, which generates larger K-ASRs; both
hilbASR and nnASR are better than quadASR, which gen-
erates K-ASRs much larger than those necessary to achieve
the required anonymization degree. quadASR is the farthest
from the ideal anonymization technique, by a considerable
margin compared to hilbASR and nnASR. For this reason,
it yields increased K-ASR generation and query processing
cost, as we show in the following experiment. We have ob-
tained the same trend for both rectangular and circular K-
ASR.

5.2 Anonymizer Evaluation
At the anonymizer site, we consider three different user

workload sizes: 50000, 100000 and 300000 users, with lo-
cations randomly selected from the ST and NA sets. The
chosen user sets are representative for medium-to-large scale
systems; the largest size (300000) corresponds to approxi-
mately 1% of the population of California. We measure the
spatial extent of the K-ASR generated by all three anony-
mization techniques.

At each run, we generate 1000 queries, having as origin
a randomly chosen user. For each query, we determine the
corresponding K-ASR and we measure its spatial extent.
From space considerations, we present our results only for
the ST dataset. The results obtained for the NA set exhibit
a similar behavior.

First, we fix the number of users to 50000 and we mea-
sure the K-ASR area and perimeter for different degrees of
anonymity K. Figure 5.9 shows the measurements obtained
for the ST dataset. Both hilbASR and nnASR outperform
quadASR in terms of area, by a factor of up to 2.1 and 3.7
respectively. nnASR outperforms hilbASR by a factor of up
to 1.8 in terms of K-ASR area. Furthermore, both methods
scale well, with the K-ASR area increasing linearly with K.
A similar trend can be observed for K-ASR perimeter.

For a fixed value of K = 80, we plot the area and perimeter
versus the number of users. Since the size of the dataspace
remains constant, an increase in user population translates
to higher user density, hence reduced K-ASR size. In Figure
5.10, we observe that hilbASR and nnASR both outperform
quadASR for all user cardinalities.

In terms of processing cost (Figure 5.11), hilbASR outper-
forms both quadASR and nnASR. Since hilbASR is better
than quadASR in terms of both K-ASR size and genera-
tion time, and furthermore it features stronger anonymiza-
tion capabilities (hilbASR uses fixed K-ASRs), we conclude
that hilbASR is clearly superior to quadASR in all aspects.
hilbASR and nnASR provide a clear tradeoff between K-
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Figure 5.10: Area and perimeter for rectangular K-
ASR, K = 80, varying number of users
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Figure 5.11: K-ASR generation time

ASR generation cost and K-ASR size: if K-ASR generation
latency is of prime importance, then hilbASR is the best
choice. On the other hand, if the K-ASR size needs to be
reduced, nnASR is preferable. A reduction in K-ASR area
translates to both reduced LS query processing time, and a
smaller number of query results returned, which saves com-
munication bandwidth.

So far, we have focused on rectangular K-ASRs. Now,
we consider the case of circular K-ASRs by evaluating the
“smaller-area”(SA) optimization method (introduced in Sec-
tion 3), which for a given query computes both the enclos-
ing rectangle and circle K-ASR and retains the shape with
smaller area. Since the nnASR technique exhibits best lo-
cality, and is likely to generate “balanced” K-ASRs with
equal spatial extent in both dimensions, we expect circular
K-ASRs to bring a reduction in K-ASR size only for the
case of nnASR. Figure 5.12 shows the reduction in K-ASR
size for varying degrees of anonymization K. We observe
that SA manages to reduce K-ASR size by a margin of up
to 10%.

In the LS performance analysis section, we investigate fur-
ther the advantages of using circular K-ASR with respect to
query processing.

5.3 Location Server Evaluation
At the LS site, the dataset consists of points of interest

corresponding to the entire NA dataset. The query workload
of the LS consists of the output of the anonymizer for a
user population corresponding to subsets of NA of different
sizes. For each K-ASR-generation technique, we consider a
workload of 1000 queries, i.e., 1000 K-ASR instances. Due
to lack of space, we do not include our results for the ST
dataset. However, the trends are similar for both NA and
ST datasets.

We compare the average processing time and number of
results for all three K-ASR generation techniques. The pro-
cessing time includes both CPU time and I/O time. The
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Figure 5.12: Area and perimeter for nnASR, rec-
tangular vs circular K-ASR, varying K, 50000 users
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Figure 5.13: kNN queries, varying number of neigh-
bors, 50000 users, K = 80

number of results is a measure of the communication cost
incurred by the query.

First, we focus on kNN queries. Fig 5.13 shows the num-
ber of results and average processing time for varying num-
ber of nearest neighbors k. nnASR generates a significantly
lower number of results, roughly 50% compared to the other
techniques. This is expected, since the size of nnASR K-
ASRs is significantly smaller than for hilbASR and quadASR.
hilbASR outperforms quadASR in number of results by ap-
proximately 10%. In terms of processing time, nnASR in-
curs 70-75% of the cost of hilbASR and quadASR.

The experimental results for fixed number of neighbors
k = 2 and varying degree of anonymization K are presented
in Figure 5.14. We notice that nnASR outperforms both
hilbASR and quadASR, in terms of both result set size and
query processing time. The difference is more significant for
larger K values, as the size of the K-ASR grows.

While, nnASR reduces the load at the LS site, recall
from the previous section that, it spends more time at the
anonymizer to construct the K-ASR, compared to hilbASR.
Hence, there is a clear tradeoff in terms of processing time: if
the system load at the LS site is an important concern, then
nnASR is the recommended anonymization technique. If,
on the other hand, the anonymizer has limited processing
capacity, then hilbASR is more appropriate. For varying
number of users (Figure 5.15), both the average cost and
the number of results per query decrease, since the size of
the K-ASR decreases.

The results for range queries, presented in Figure 5.16,
exhibit a similar trend as for NN queries. Again, we observe
a significant advantage of nnASR over the other techniques,
while hilbASR outperforms quadASR in terms of both pro-
cessing cost and result set size. A trend similar to the one for
NN queries shown in Figure 5.15 was observed for a varying
number of users.

We now compare the relative performance of NN queries
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Figure 5.14: kNN queries, varying K, k = 2 neigh-
bors, 50000 users
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Figure 5.15: kNN queries, varying number of users,
k = 2 neighbors, K = 80

using rectangular and circular nnASR-generated K-ASRs.
In Section 4 we introduced the CkNN algorithm that com-
putes the nearest neighbors of a given circular spatial region.
We now show that using the CkNN algorithm, we can im-
prove the accuracy of the nearest neighbor search, returning
a smaller result set to the anonymizer.

We consider the case of rectangular K-ASR and K-ASR
generated using the “smaller-area”(SA) method introduced
earlier. Out of the 1000 queries in the SA set, 45% of the K-
ASRs for small values of K, and up to 90% for large values of
Kare circles. Figure 5.17 shows our results for k = 2 neigh-
bors. The reduction in number of results for the SA method
can be as significant as 10%, compared to the rectangular
K-ASR. This reduction comes at the cost of increased pro-
cessing time of the CkNN algorithm. Therefore, circular K-
ASRs are appropriate if minimizing the communication cost
is our primary goal; otherwise, if the processing time at the
LS is our main concern, rectangular K-ASRs are preferred.

Figure 5.18 shows the performance of query processing for
SA-generated K-ASR in comparison with the rectangular K-
ASR, for a varying number of users. We observe the same
decreasing trend in cost per query as the number of users
increases similar to the case of rectangular K-ASR.

6. CONCLUSIONS
In this paper we propose a framework for preserving ano-

nymity in Location Based Services. The main idea is to
conceal the user coordinates, by replacing them with a spa-
tial region (either a circle or a rectangle). This region covers
the query initiator and at least K−1 other users, where K is
a user-specified parameter determining the required degree
of privacy. We propose methods that construct appropri-
ate anonymization regions, and investigate their tradeoffs.
We also design algorithms that run at untrusted location
servers, and compute exact answers to Range and Nearest
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Figure 5.16: Range queries, 50000 users, varying K
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Figure 5.17: nnASR, rectangular vs SA K-ASR, k =
2 neighbors, 50000 users, varying K

Neighbor queries given the anonymizing region (instead of
the user coordinates). Realistic experiments demonstrate
the efficiency of our methods. To the best of our knowledge,
this is the first work addressing the entire process of anony-
mization and query evaluation in Location Based Services.

Our work protects the user’s privacy against attacks within
reasonable effort. If the attacker has access to excessive re-
sources, the proposed methods will suffer. For example, if
the attacker can deploy a large number of decoys near a
user u, he may intercept a query from u with high confi-
dence, since the anonymizing range is likely to include the
known decoys. For the majority of applications, however,
such an attack is impractical.

Our initial findings reveal interesting directions for future
research. One such direction is to anonymize multiple user
queries in a single region if they are sufficiently close to each
other. Another one is to ensure anonymity for users issu-
ing continuous spatial queries. These queries monitor result
changes as the user moves, and they have recently attracted
considerable research interest. Intuitively, preserving anony-
mity is harder in this case, because asking the same query
from successive locations may disclose the moving habits
and the identity of the user. Finally, it would be interesting
to investigate methods that do not require an anonymizer.
Assuming that the users trust each other, the query initia-
tors could communicate and collaborate with peers in their
vicinity to compute their anonymization region.
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