

T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

Founded 1905

S c h o o l o f C o m p u t i n g
Lower Kent Ridge Road, Singapore 119260

TRB6/01

XOO7: Applying OO7 Benchmark to XML Query Processing Tools

Stéphane BRESSAN, Gillian DOBBIE, Zoe
LACROIX, Mong Li LEE,

Ying Guang LI, Ullas NAMBIAR and Bimlesh
WADHWA

June 2001

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the
author, at the address shown on the cover.

Ivan PNG
Dean of School

 1

XOO7: Applying OO7 Benchmark to XML Query Processing Tools

Stéphane Bressan1 Gillian Dobbie2 Zoe Lacroix3 Mong Li Lee1

Ying Guang Li1 Ullas Nambiar3 Bimlesh Wadhwa1
1National University of Singapore, {steph, leeml, liyinggu, bimlesh}@comp.nus.edu.sg

2University of Auckland, gill@cs.auckland.ac.nz
3Arizona State University, {zoe.lacroix, mallu}@asu.edu

ABSTRACT

If XML is to play the critical role of the lingua franca for Internet data interchange that many predict, it is

necessary to start designing and adopting benchmarks allowing the comparative performance analysis of

the tools being developed and proposed. The effectiveness of existing XML query languages has been

studied by many who focused on the comparison of linguistic features, implicitly reflecting the fact that

most XML tools exist only on paper. In this paper, with a focus on efficiency and concreteness, we

propose a pragmatic first step toward the systematic benchmarking of XML query processing platforms

with an initial focus on the data (versus document) point of view. We propose XOO7, an XML version of

the OO7 benchmark. We discuss the applicability of XOO7, its strengths, limitations and the extensions

we are considering. We illustrate its use by presenting and discussing the performance comparison against

XOO7 of three different query processing platforms for XML.

1. INTRODUCTION

It is becoming increasingly important to effectively and efficiently manage XML data. In particular, we

expect new Web based applications for e-commerce to require XML query processing facilities.

Introduced as a schema-less, self-describing data representation language, XML quickly emerged as the

standard for information interchange for the Web [XML:00]. The development of XML was not furthered

directly by the mainstream database community, yet database researchers actively participated in

developing standards centered on XML, and particularly query languages for XML. Many XML query

languages have been proposed but only few query-processing tools are available for use. The languages

and tools can be classified into two groups – those designed with a document focus e.g. XQL [RLS98],

Quilt [RCF00] and Kweelt [SDN00], and those designed with a database focus e.g. LORE [AQMWW97],

Oracle’s XSU [OXPDT00] and XML-QL [DFFLS98]. Recently, XQuery [XQuery:00] has been drafted

as the query language for XML, combining both document and data centric orientation of XML. At this

juncture a user intending to setup a XML based data interchange or storage system would be faced by the

question of which XML query languages to base her system on. With so many proposals and tools, end-

 2

users need better insight as to which one is most suitable in terms of features and performance for their

application requirements. Several papers have compared the features of these XML query languages

[FSW00, BC00] but none have provided a performance evaluation.

In this paper, we propose XOO7 - a benchmark to evaluate the performance of XML query processing

tools. XOO7 is an adaptation of the OO7 Benchmark [CDN93]. OO7 provides a comprehensive

evaluation of object-oriented database management system (OODBMS) performance. The main

OODBMS and storage managers have been benchmarked against OO7: E/Exodus, Objectivity/DB, and

Ontos. The rationale underlying both the design of XML, XML query languages, and the object-oriented

data model and query languages is the need for richer structure for the flexible modeling and querying of

complex data. Although XML also attempts to provide a framework for handling semi-structured data, it

encompasses most of the modeling features of complex object models [AG88, AS88]. This observation

motivated our study. There are straightforward correspondences between the object-oriented schemas and

instances and XML DTDs and data. We mapped the OO7 schema and instances into a DTD and the

corresponding XML data sets. Our purpose here is to evaluate the performance of query processing

facilities, therefore we translated the eight OO7 queries into the respective languages of the query

processing tools we tested: LORE, a special-purpose (or semi structured) system university prototype;

Kweelt, an open source university prototype that works on ASCII XML data files; and a commercial

object-relational database system (OR-DBMS1) that provides a simple but limited mapping of XML data

into object-relational data. The characteristics we measure are response time for different queries and

classes of queries, time to load the data, and space required to store the data.

The rest of the paper is organized as follows. Section 2 addresses the expected functionalities of XML

query languages. The design of a benchmark for XML queries is addressed in Section 3. The XOO7 data

model and queries are defined in Section 4. Section 5 presents the preliminary performance results.

Section 6 summaries other related work and we conclude in Section 7 by highlighting the possible

extensions to this work.

2. XML QUERY FUNCTIONALITIES

The performance of the implementation of query languages for XML depends strongly on their expressive

power: the functionalities they provide. Indeed, some of the expected functionalities may affect

significantly the efficiency of the system. Many languages claim to be XML query languages, however

1 We have chosen to withhold the name of the commercial system we have tested given the sensitivity of the results
of the benchmark experiments.

 3

their functionalities vary dramatically. Some languages such as LOREL [AQMWW97, GMW99] or XSU

[OXPDT00] provide the functionalities offered by a traditional data oriented query language such as

SQL. Others focus on XML integration and restructuring with additional data-oriented functionalities

such as join, nesting and aggregation as in XML-QL [XMLQL98], or partial or none of these data-

oriented functionalities as in XSL [XSL-XML:00] and XQL [RLS98]. More recently, languages such as

Quilt [CRF00] and Xquery [XQuery:00] extend the data-oriented approach to functionalities to handle

XML documents.

The design of a benchmark for XML query languages shall address the performance issues connected to

the characteristics of XML query languages, thus their functionalities. XML query languages

functionalities were addressed in a comparative analysis of XML query Languages [BC00] and listed as

"must have" in the requirements [Query-XML:00] published by the W3C XML Query Language working

group. Table 1 enumerates all these requirements. An XML query language should support the

manipulation and extraction of data from multiple documents (R1), by accessing and combining different

parts within documents (R9), querying the DTD [XML:00], XML Schema [schema-XML:01a, schema-

XML:01b, schema-XML:01c] (R1) or along paths (R13), by using data types (R1) or evaluating

conditions over textual elements (R5). XML queries should support implicit order (order of elements

within the XML document) as well as explicit order (order defined in the schema) (R2). Complex Data

models can be defined using the XML data model, in par with this, a XML query language should

therefore be able to work with differing data models (R4) all of which would have a common origin.

Since XML is a semi-structured language, NULL values may be present. A missing element may or may

not be representable as NULL valued element but vice versa may be true, and hence NULL value

manipulation will take on additional complexity (R7). Support for quantification and negation in queries

(R6) is needed. XML can capture structured information and hence a XML query language should have

the expressiveness of a structured query language like SQL for relational databases. Hence such a

language should support various types of join operations (R9), aggregation (R10), sorting (R11). Unlike

XML, relational model disregards the order. Hence sorting and aggregation increase in complexity when

order and document structure need to be preserved in some form (R17). The language must be capable of

generating new XML structures and transforming one XML structure to another (R18). Since queries can

be along paths and paths can consist of recursive calls to themselves or sub paths, structural recursion

should be supported (R20). A query on a database may change the underlying data. Hence the query

language should provide methods for updating the underlying database (R15).

 4

Id Description

R1 Query all data types and collections of possibly multiple XML documents.

R2 Allow data-oriented and document-oriented and mixed queries.

R3 Accept streaming data.

R4 Support operations on various data models.

R5 Allow conditions/constraints on text elements.

R6 Support for hierarchical and sequence queries.

R7 Manipulate NULL values.

R8 Support quantifiers (∃,∀, and ~) in queries.

R9 Allow queries that combine different parts of document(s).

R10 Support for aggregation.

R11 Able to generate sorted results.

R12 Support composition of operations.

R13 Allow navigation (reference traversals).

R14 Able to use environment information as part of queries e.g. current date, time etc.

R15 Able to support XML updates if data model allows.

R16 Support for type coercion.

R17 Preserve the structure of the documents.

R18 Transform and create XML structures.

R19 Support ID creation.

R20 Structural recursion.

Table 1: Functionalities of XML Query Languages

3. DESIGNING A BENCHMARK FOR XML QUERIES

An XML document is a collection of elements and sub-elements arranged in order. Without dwelling on

the details of XML, a simple abstraction of XML is a labelled ordered tree [V01]. XML syntax is suited

for semistructured data. Yet XML and semistructured data have subtle differences [ABS00]. A tree

representation of XML and semi structured data is interchangeable but a graph structure of both models

has differences. Semistructured data model is based on unordered collections, while XML is ordered.

Unique identifiers can be associated with elements in XML. References to such elements can be made by

other elements in the XML document. A close observation of XML model will show its similarity to the

 5

object-oriented data model. Object-oriented data model is similar to both XML and semistructured data

model with respect to representation of objects or entities using trees. Similar to XML we can assign

object identities or ‘oids’ to objects if these have to be referenced by other objects. An object identifier

can become part of a namespace and can refer other objects across the Web. This is similar to the notion

of Namespaces in XML. In fact XML can be viewed as an object model. The standard API for XML

proposed by W3C called DOM uses the Document Object Model [DOM-XML: 98] for XML documents.

The Resource Description Framework used for describing metadata for XML also has object-oriented

flavour [RDF-XML:00].

Thus while developing the benchmark we based our decisions on two facts. First, the benchmark is for

XML query systems using XML data and documents stored locally in files or database. Second, XML

data model shows high degree of similarity to object-oriented model. Hence we decided to take OO7 – a

benchmark designed to test performance of OOBDMBS and extend it to develop a benchmark for XML

query processing systems. However, adaptations are needed if we want to use OO7 as a benchmark (refer

to requirements of Table 1).

3.1 THE XOO7 BENCHMARK

XOO7 is an XML version of the OO7 Benchmark. Figure 1 shows the conceptual schema of the database

modeled using the ER diagram given in the OO7 benchmark. We have translated this conceptual schema

into the DTD shown in Figure 2. This translation involves some arbitrary choices, which are beyond the

scope of this preliminary report. Nevertheless we outline our main decisions in the sequel of this section.

Since XML does not cater for ISA relationships, we have pre-processed the inheritance of attributes and

relationships. This transformation is common to many OO7 implementations. We choose the root of the

XML document to be <Module>. There are three attributes in <Module>: MyID2, type and buildDate.

Each <Module> contains the elements <Manual> and <ComplexAssembly>. The element

<ComplexAssembly> inherits the attributes of Design Object. Each assembly part has two integer

attributes MyID and buildDate, and a string attribute type. Each <BaseAssembly> contains

<CompositePart>. Each <CompositePart> has three attributes: MyID, type and buildDate, and three

elements: <Document>, <AtomicPart> and <Connection>. The <Document> element has attributes

MyID and title. Every <AtomicPart> has six attributes: MyID, type, buildDate, x, y and docId. Each

<Connection> element has two attributes: type and length, and two sub-elements: <Part1> and <Part2>.

Both <Part1> and <Part2> have an integer attribute IDREF. Connection is a recursive relationship. In

2 Since ID is a reserved word in XML, we have renamed it to MyID.

 6

XML, it can translate into an attribute of <AtomicPart>, or into an element at the same level as

<AtomicPart> or at a level higher or lower than <AtomicPart>. We choose a lower level for our

experiments on initial data sets. There are up-to seven levels of assemblies in the OO7 benchmark. We

choose to use five levels in XOO7 because of the limitations of most existing XML tools in the volume of

data they can manipulate. This is sometimes due to the naïve representation of tags (as ASCII) in many

systems such as Kweelt.

Similarly to OO7, XOO7 benchmark proposes three different databases of varying size: small, medium,

and large. Table 2 summarizes the parameters and their corresponding values that are used to control the

size of the XML data.

Parameters Small Medium Large

NumAtomicPerComp 20 200 200

NumConnPerAtomic 3, 6, 9 3, 6, 9 3, 6, 9

DocumentSize (bytes) 500 1000 1000

ManualSize (bytes) 2000 4000 4000

NumCompPerModule 50 50 50

NumAssmPerAssm 3 3 3

NumAssmLevels 5 5 5

NumCompPerAssm 3 3 3

NumModules 1 1 10

Table 2: XOO7 database parameters.

 7

 8

We have grouped the 8 OO7 queries, Q-1 to Q-8, into three groups: Group I involves lookups; Group II

involves range queries; Group III is composed of join queries.

Group I

Q-1: Exact match lookup. Generate 5 random numbers for AtomicPart’s MyID. Return the AtomicPart’s

MyID according to the 5 numbers.

Q-4: Path lookup. Generate 5 random titles for Document. Return the Document’s MyID according to

the 5 titles.

Group II

Q-2: Select 1% of AtomicPart (with a buildDate after 1990) and return their MyID.

Q-3: Select 10% of AtomicPart (with a buildDate after 1900) and return their MyID.

Q-7: Select all AtomicPart and return their MyID.

Group III

Q-5: Single-level “make”. Find the MyID of a CompositePart if it is more recent than the BaseAssembly

it uses.

Q-6: Multi-level “make”. Find the MyID of a CompositePart (recursively) if it is more recent than the

BaseAssembly or the ComplexAssembly it uses.

Q-8: Ad hoc join. Join AtomicPart and Document on the docId of AtomicPart and the MyID of

Document.

To illustrate the concrete syntax of XML query languages, we give below the code of Q-6 in Kweelt,

Lorel for Lore, and SQL for the commercial OR-DBMS, respectively.

Q6 in Kweelt:

<result>

FOR $ca IN document("/home/hon/liyinggu/os/small91.xml")//ComplexAssembly,

 $ba IN $ca//BaseAssembly, $cp IN $ba/CompositePart

 [@buildDate .>. $ba/@buildDate OR @buildDate .>. $ca/@buildDate]

RETURN $cp/@MyID

</result>

 9

Q6 in Lorel for Lore:

SELECT cp.MyID FROM Module1(.ComplexAssembly)* ca, ca(.ComplexAssembly)*.BaseAssembly ba,

ba.CompositePart cp

WHERE ba.buildDate < cp.buildDate or ca.buildDate < cp.buildDate;

Q6 in SQL for OR-DBMS:

SELECT cp.MYID

FROM COMPLEXASSEMBLY1 c1, COMPLEXASSEMBLY2 c2,

COMPLEXASSEMBLY3 c3, COMPLEXASSEMBLY4 c4, BASEASSEMBLY ba, COMPOSITEPART cp

WHERE (cp.BUILDDATE > c1.BUILDDATE and c1.MYID = c2.PARENTID and c2.MYID = c3.PARENTID and

c3.MYID = c4.PARENTID and c4.MYID = ba.COMPLEXID and ba.MYID = cp.BASEID)

or (cp.BUILDDATE > c2.BUILDDATE and c2.MYID = c3.PARENTID and c3.MYID = c4.PARENTID

and c4.MYID = ba.COMPLEXID and ba.MYID = cp.BASEID)

or (cp.BUILDDATE > c3.BUILDDATE and c3.MYID = c4.PARENTID

and c4.MYID = ba.COMPLEXID and ba.MYID = cp.BASEID)

or (cp.BUILDDATE > c4.BUILDDATE and c4.MYID = ba.COMPLEXID and ba.MYID = cp.BASEID)

or (cp.BUILDDATE > ba.BUILDDATE and ba.MYID = cp.BASEID);

4. PERFORMANCE STUDY

We use XOO7 to evaluate three query processing platforms: Lore, Kweelt and OR-DBMS. The

experiments are run on a SunOS 5.7 Unix system (333 MHz), with 256 MB RAM and 1.9 GB disk space.

The C++ implementation of XOO7 is available at http://www.comp.nus.edu.sg/~ebh/XOO7.html.

LORE, developed in Stanford University, is one of the earliest systems developed to store and query semi

structured data. It has been extended at Stanford University to query XML data, and is implemented in

C++. LORE supports a lot of features but not some important aggregate and update functions. Kweelt was

designed and implemented at the University of Pennsylvania. It is written in Java and it is open-source. Its

query language is based on Quilt, which in turn leverages the XPath standard. Kweelt works from ASCII

XML data files but can be interfaced to other storage back-ends. We have used it with ASCII XML data

files. OR-DBMS is a commercial object-relational database management system. It is built on top of SQL

and data in the object-relational database tables or views can be transformed into XML data. OR-DBMS

provides a simple but limited mapping of XML data into object-relational data. We used XML-DBMS

[B00] to perform this mapping.

 10

Each query is executed ten times and the average response time is recorded. The response time results are

presented in Figure 3. Because of space limitation we present the results by groups of queries for the

small and medium databases. The relatively bad performance of Kweelt can be explained by the fact that

it accesses the ASCII XML data files. Regardless of the query, the performance degrades with the

database (file) size. Group III involving path expressions and joins - Q-6 and Q-8, respectively - yield

particularly bad performance. Lore is using a structured storage and implements access methods. The

performance is consistent with the amount of data accessed by the query regardless of the overall database

size. Only on path expression (Q-6) have we noticed a significant impact of the overall database size on

the response time. We suspect that the path expression evaluation involves a systematic browsing of the

data. XSU leverages the query processing power of the relational database engine and yields the best

response time. In Q-6, the path expression is implemented iteratively knowing there are exactly five

levels. Notice finally that, in Kweelt, all the queries for a medium size database overflow the virtual

memory and could not be executed.

We also recorded the space utilization for each of the systems for the various databases in the benchmark.

The results are illustrated in Figure 4 for varying size of the input XML data. The storage requirements of

Kweelt are exactly the size of the input ASCII XML data files. OR-DBMS takes advantage of the

relational storage, economizing on the storage of the tags.

Query 1, 4:

Query 2, 3, 7:

Query 5, 6, 8:

Small database Medium database

0

5

1 0

1 5

2 0

0 2 4 6 8 1 0

0

5

1 0

1 5

2 0

0 2 4 6 8 1 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

0 2 4 6 8 1 0

0

50

100

150

0 20 40 60 80 100

0

2 0 0

4 0 0

6 0 0

8 0 0

0 5 0 1 0 0

0

50

100

150

0 20 40 60 80 100

Figure 3: Response time result for the eight queries.

LORE Kweelt OR-DBMS

 11

5. DISCUSSIONS AND RELATED WORK

Semistructured query languages and data models have been studied widely in [A97][B97]. In [FK99]

several storage strategies and mapping schemes for XML data using a relational database are explored.

Domain-specific database benchmarks for OLTP (TPC-C), decision support (TPC-H, TPC-R, APB-1),

information retrieval, spatial data management (Sequoia) etc are available at [G93], [TPC].

To our knowledge only two benchmarks, XMach-1 [BR00] and XMark [SWK+01], designed for XML,

are publicly available. XMach-1 tests multi-user features. It evaluates standard and non-standard

linguistic features such as insertion, deletion, querying URL, and aggregate operations. Although the

proposed workload and queries are interesting, the benchmark has not been applied and no performance

results exist. XMark is a very recent proposal to assess the performance of XML query processors. This

benchmark consists of an application scenario which models an Internet auction site and 20 XQuery

challenges designed to cover the essentials of XML query processing. These queries have been evaluated

on an internal research prototype, Monet XML, to give a first baseline. Tables 3, 4, and 5 show the

functionalities covered by queries given in XOO7, XMach-1 and XMark respectively. These benchmarks

cover an average of 5 to 8 functionalities listed in Table 1. While the XMark benchmark has 20 query

challenges, both XOO7 and XMach-1 have 8 benchmarks queries. In additional, XMach-1 has 2 queries

to test updates. We note that query Q8 in XMach-1 test several operations: count, sort, join and

existential, making it hard to analysis the experiment result because it will not be clear which feature

causes poor performance.

Space for three systems

0

50
100

150

0 10 20 30 40 50 60 70

Data size (MB)

S
p

ac
e

u
ti

lit
y

(M
B

)

OR-DBMS

LORE

Kweelt

Figure 4: Space cost for three systems: LORE, Kweelt and OR-DBMS.

 12

ID Description Comments Coverage
Q1 Randomly generate 5 numbers in the range of AtomicPart's MyID.

Return the AtomicPart's MyIDs according to the 5 numbers.
 R1, R2

Q4 Randomly generate 5 titles for Documents.
Return Document's MyIDs by lookup on these titles.

 R1, R2

Q2 Select 1% of the latest AtomicParts via buildDate. Return the MyIDs. R4
Q3 Select 10% of the latest AtomicParts via buildDate. Return the MyIDs. R4
Q7 Select all of the AtomicParts and return the MyIDs. R4, R8
Q5 Find the MyID of a CompositePart if it is later than the BaseAssembly

it is using.
 R1, R2

Q6 Find the MyID of a CompositePart (repeatedly) once there is a
BaseAssembly or ComplexAssembly it is using with a buildDate more
than it is.

 R1, R2

Q8 Join AtomicParts and Documents on AtomicParts docId and Documents
MyID.

 R9

Table 3: Current XOO7 Queries

ID Description Comments Coverage
Q1 Get document with given URL. Return a complete document with

the original structure.
R1

Q2 Get doc-id from documents containing a given
phrase.

Text retrieval query. The phrase is
chosen from the phrase list.

R5

Q3 Return leaf in tree structure of a document given
by doc-id following first child in each node
starting with document root.

Simulates exploring a document
with unknown structure
(path traversal).

R2

Q4 Get document name (last path element in
directory structure) from all documents, which are
below a given URL fragment.

Browse directory structure.
Operation on structured unordered
data.

R2

Q5 Get doc-id and id of parent element of author
element with a given content.

Find chapters of a given author.
Query across all DTDs or test
documents.

R4

Q6 Get doc-id and insert date from documents having
a given author (document attribute).

Join Operation. R9

Q7 Get doc-id from documents, which are referenced
by at least four other documents.

Get important documents. Needs
some kind of group by and count
operation.

R10

Q8 Get doc-id from the last 100 inserted documents
having an author attribute.

Needs count, sort and join
operations and accesses metadata.

R10

M1 Insert document with given URL. The loader generates a document
and URL and sends them to the
HTTP server.

R15

M2 Delete a document with given doc-id. A robot requests deletion. R15

Table 4: Queries specified in XMach-1 Benchmark.

 13

ID Description Comments Coverage
Q1 Return the name of the person with ID

'person0' registered in North America.
Checking ability to handle strings
with a fully specified path.

R1

Q2 Return the initial increases of all open auctions. Evaluate cost of array lookups.
Query on the order of data. A
relational backend may have
problem determining the first
element.

R2

Q3 Return IDs of all open auctions whose current
increase is at least twice as high as initial.

More complex evaluation of array
lookup.

R2

Q4 List reserves of those open auctions where a
certain person issued bid before another person.

Querying tag values capturing
document orientation of XML.

R4

Q5 How many sold items cost more than 40 ? Check how good a DBMS
performs since XML model is
document oriented. Checks for
typing in XML.

R2

Q6 How many items are listed on all continents ? Test efficiency in handling path
expressions.

R4

Q7 How many pieces of prose are in our database? Query is answerable using
cardinality of relations. Testing
implementation.

Q8 List the names of persons and the number of
items they bought.

Check efficiency in processing
IDREFs. Note a relational system
would handle this using foreign
keys.

R13

Q9 List the names of persons and the names of items
they bought in Europe (Joins person,
closed_auction, item)

Same as Q8. R13

Q10 List all persons according to their interest. Use
French markup in the result.

Grouping, restructuring and
rewriting. Storage efficiency
checked.

R10

Q11 For each person, list the number of items on sale
whose price does not exceed 0.02% of his
income.

Value based joins. Authors feel
this query is a candidate for
optimizations.

R9

Q12 For each richer-than-average person, list the
number of items currently on sale whose price
does not exceed 0.02% of the person's income.

As above. R9

Q13 List names of items registered in Australia along
with their descriptions.

Test ability of database to
reconstruct portions of XML
document.

Q14 Return the names of all items whose description
contains the word 'gold'.

Text search narrowed by
combining the query on content
and structure.

R2, R5

Q15 Print the keywords in emphasis in annotations of
closed auctions.

Attempt to quantify completely
specified paths. Query checks for
existence of path.

R8

Q16 Return the IDs of those auctions that have one or
more keywords in emphasis.

As above. R8

Q17 Which persons don't have a homepage ? Determine processing quality in
presence of optional parameters.

 14

Q18 Convert the currency of the reserve of all open
auctions to another currency.

User defined functions checked.

Q19 Give an alphabetically ordered list of all items
along with their location.

Query uses SORTBY, which
might lead to a SQL-ish ORDER
By and GROUP BY because of
lack of schema. The execution
engine may produce an sorted
result from the data.

R10

Q20 Group customers by their income and output the
cardinality of each group.

A processor have to identify that
all the subparts differ only in
values given to attribute and
predicates used. A profile should
be visited only once.

Table 5: XMark Benchmark Queries.

Figures 5 and 6 show the conceptual schema for the XMach-1 and XMark testbed database respectively.

Attributes have been omitted to simplify the diagrams. We observe that the structure in XMach-1 is

similar to the ComplexAssembly in XOO7. The basic relationship captured is CONTAINS and is not

deeply nested. In contrast, XOO7 adapts and extends an established benchmark such as OO7, which has a

more complex structure than XMach-1 and is deeply nested. Complex objects such as date are found in

XOO7. Breadthwise, the XMark structure is more complicated than XOO7 and XMach. Depthwise,

XMark lacks repeating elements, such as the <complex_assembly> in XOO7 and <section> in XMach.

Furthermore, XMark emphasizes the importance of one-document version benchmark.

Figure 5: ERD of XMach-1 Database.

 15

Figure 6: ERD of XMark Database.

6. CONCLUSION

In this paper, we proposed XOO7, an XML version of the OO7 benchmark. This benchmark is a

pragmatic first step toward the systematic benchmarking of XML query processing platforms. We

illustrated its use by presenting and discussing the performance comparison against XOO7 of three query

processing platforms for XML: LORE, KWEELT, and OR-DBMS. Against this benchmark, LORE and

OR-DBMS consistently outperformed KWEELT. However, OR-DBMS and KWEELT were more

economical with space. We are heartened by these results and will extend the benchmark in a number of

directions. We list only three of them here. The XOO7 benchmark is based on single user operations. In

order to test how platforms scale we intend to extend XOO7 to test platforms with multi-users. Given that

XOO7 is an XML version of OO7, there is a possibility that XOO7 is currently biased towards systems

 16

that perform database features well and against systems that perform information retrieval features well.

We are extending the set of queries in XOO7 to be more representative of what is expected of a general-

purpose XML query processing platforms. The extension will include catering for the document aspects

of XML and taking other W3C functional requirements for XML into account. Table 6 gives some of the

candidate queries and their corresponding coverage.

ID Description Comments Coverage

Q9 Randomly generate two phrases among all phrases in Documents. Select

these documents containing 2 phrases.

 R5

Q10 Repeat query Q1 but replace duplicated elements using IDREF. R13

Q11 Select all BaseAssemblies from one XML database where it has the

same "MyID" and "type" attributes as the other BaseAssemblies but

with later buildDate.

 R9

Q12 Select all AtomicParts with corresponding CompositeParts as their sub-

elements.

 R1, R2

Q13 Select all ComplexAssemblies with type "type008. R1, R2

Table 6: New Queries for XOO7.

ACKNOWLEDGEMENT

This work is funded by the National University of Singapore Academic Research Fund RP082112.

REFERENCE

[A97] S. Abiteboul. Querying semistructured data. In Proc. ICDT, 1-18, 1997.

[ABS00] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations to Semistructured

Data and XML , Morgan Kaufman Publishers, 2000.

[AG88] Serge Abiteboul, Stéphane Grumbach. COL: A Logic-Based Language for Complex Objects.

EDBT, pp 271-293, 1988.

[AS88] Serge Abiteboul, Michel Scholl. From Simple to Sophisticate Languages for Complex

Objects. Data Engineering Bulletin 11(3), pp 15-22, 1988.

[AQMWW97] S. Abiteboul, D. Quass, J. McHug, J. Widom, J. Wiener. The Lorel Query Language for

Semistructured Data. International Journal on Digital Libraries, 1(1):68, April 1997.

[B00] R. Bourret. Java Packages for Transferring Data between XML Documents and Relational

Databases. http://www.rpbourret.com/xmldbms/readme.htm.

 17

[B97] P. Buneman. Semistructured Data. In Proceedings of Symposium on Principles of Database

Systems, 117-121, 1997.

[BC00] A. Bonifati, S. Ceri. Comparative Analysis of Five XML Query Languages. ACM SIGMOD

Record , 29(1), 2000.

[BR00] T. Bohme, E. Rahm. XMach-1: A Benchmark for XML Data Management.

http://dbs.uni-leipzig.de/projekte/XML/XmlBenchmarking.html

[CDN93] M. J. Carey, D. J. DeWitt, J. F. Naughton. The OO7 benchmark. ACM SIGMOD Conference,

pp. 12-21, Washington, 1993.

[CDN94] M. J. Carey, D. J. DeWitt, J. F. Naughton. The OO7 benchmark (technical report).

ftp://ftp.cs.wisc.edu/oo7

[CRF00] D. Chamberlin, J. Robie, D. Florescu. Quilt: An XML Query Language for Heterogeneous

Data Sources. ACM SIGMOD Workshop on Web and Databases (WebDB’00), Dallas, 2000.

[DFFLS98] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu. XML-QL: A Query Language for

XML. http://www.w3.org/TR/NOTE-xml-ql/.

[DOM-XML:98] V. Apparao, S. Byrne. M Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie,

R. Sutor, C. Wilson, L. Wood. Document Object Model, 1998. http://www.w3.org/TR/REC-

DOM-Level-1/.

[FK99] D. Florescu, D. Kossman. A Performance Evaluation of Alternative Mapping Schemes for

Storing XML Data in a Relational Database, Report 3680 INRIA, France, May 1999.

[FSW00] M. Fernandez, J. Simeon, P. Wadler. XML Query Languages: Experiences and Exemplars,

2000. http://www-db.research.bell-labs.com/user/simeon/xquery.html

[GMW99] R. Goldman, J. McHugh, J. Widom. From Semistructured Data to XML: Migrating the Lore

Data Model and Query Language, ACM SIGMOD Workshop on Web and Databases

(WebDB’99), 1999.

[G93] J. Gray. The Benchmark Handbook: For Database and Transaction Processing Systems, 2nd

Edition, Morgan Kaufmann Publishers, Inc., 1993.

[OXPDT00] B. Chang, M. Scardina, K. Karun, S. Kiritzov, I. Macky, A. Novoselsky, N.

Ramakrishnan. ORACLE XML Handbook (184-190), 2000.

[Query-XML:00] P. Frankhauser, M. Marchiori, J. Robie. XML Query Requirements, 2000.

http://www.w3.org/TR/xmlquery-req/.

[RCF00] J. Robie, D. Chamberlin, D. Florescu. Quilt: an XML query language, 2000.

 http://www.gca.org/papers/xmleurope2000/papers/s08-01.html

[RDF-XML:00] D. Brickley, R.V. Guha. Resource Description Framework (RDF) Schema Specification

1.0, 2000. http://www.w3.org/TR/rdf-schema/.

 18

[REQ00] XML Query Requirements. W3C Working Draft 15 August 2000.

http://www.w3.org/TR/xmlquery-req

[RLS98] J. Robie, J. Lapp, D. Schach. XML Query Language (XQL), 1998.

 http://www.w3.org/TandS/QL/QL98/pp/xql.html

[schema-XML:01a] D. Fallside. XML Schema Part 0: Primer, 2001.

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

[schema-XML:01b] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn. XML Schema Part 1:

 Structures, 2001. http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[schema-XML:01c] P. Biron, A. Malhotra. XML Schema Part 2: Datatypes, 2001.

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[SDN00] A. Sahuguet, L. Dupont, T. L. Nguyen. Querying XML in the New Millennium.

http://db.cis.upenn.edu/Kweelt/.

[SWK+01] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, R. Busse.

The XML Benchmark Project. Technical Report INS-R0103, CWI, Amsterdam, The

Netherlands, April 2001.

[TPC] Transaction Processing Performance Council. http://www.tpc.org/.

[V01] V. Vianu. A Web Odyssey: from Codd to XML. Proceedings of Twentieth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2001), Santa

Barbara, California, 2001.

[XML:00] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler. Extensible Markup Language (XML)

1.0 (Second Edition), 2000. http://www.w3.org/TR/2000/REC-xml-20001006/.

[XMLQL98] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu. XML-QL: A query language

 for XML, 1998. http://www.w3.org/TR/NOTE-xml-ql/.

[XSL-XML:00] S.Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E. Gutentag. Extensible Stylesheet

 Language(XSL),2000. http://www.w3.org/TR/xsl/.

[XQuery:00] D. Chamberlin, D. Florescu, J. Robie, J. Sim. XQuery: A Query Language for

XML, 2000. http://www.w3.org/TR/xmlquery/.

