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Abstract. Temporal keyword search enables non-expert users to query
temporal relational databases with time conditions. However, aggregates
and group-by are currently not supported in temporal keyword search,
which hinders querying of statistical information in temporal databases.
This work proposes a framework to support aggregate, group-by and time
condition in temporal keyword search. We observe that simply combining
non-temporal keyword search with aggregates, group-by, and temporal
aggregate operators may lead to incorrect and meaningless results as a
result of data duplication over time periods. As such, our framework
utilizes Object-Relationship-Attribute semantics to identify a unique at-
tribute set in the join sequence relation and remove data duplicates from
this attribute set to ensure the correctness of aggregate and group-by
computation. We also consider the time period in which temporal at-
tributes occur when computing aggregate to return meaningful results.
Experiment results demonstrate the importance of these steps to retrieve
correct results for keyword queries over temporal databases.

Keywords: Temporal Keyword Search, Aggregates and Group-By, Se-
mantic Approach

1 Introduction

Keyword query over relational databases has become a popular query paradigm
by freeing users from writing complicated SQL queries when retrieving data
[19]. Recent works in this area are focusing on efficiency of query execution [20],
quality of query results [11], and expressiveness of keyword query [9,23].

Temporal keyword search enriches the query expressiveness by supporting
time conditions in keyword query and makes data retrieval on temporal databases
easier. The corresponding SQL query will be automatically generated by the key-
word search engine where temporal joins as well as time conditions are associated
with the correct relations [9]. However, the aggregate and group-by haven’t been
supported in current temporal keyword search, which hinders users from query-
ing the statistical information over time. We observe that simply combining
non-temporal keyword search with aggregates, group-by, and temporal aggre-
gate operators may lead to incorrect aggregate results. The reason is that when
multiple relations are involved in a keyword query, there might be some data
duplication involved in the intermediate relations of temporal joins and leading
to incorrect results of accumulative aggregates, such as SUM and COUNT.
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Example Database (new)

Employee

Eid Ename DOB Employee
_Start

Employee
_End

E01 Alice 1985-03-12 2017-01-01 now

E02 Bob 1978-05-20 2017-05-01 now

E03 John 1990-10-15 2018-01-01 2018-10-31

WorkFor

Eid Did WorkFor_Start WorkFor_End

E01 D01 2017-01-01 2017-08-31

E01 D02 2017-09-01 now

E02 D01 2017-05-01 2018-02-28

E02 D02 2018-03-01 2018-04-30

E02 D01 2018-05-01 now

E03 D01 2018-01-01 2018-10-31

Department

Did Dname

D01 CS

D02 IS

EmployeeSalary

Eid Salary(per 
month)

Salary_Start Salary_End

E01 3k 2017-06-01 2018-03-31

E01 3.5k 2018-04-01 2018-09-30

E01 4k 2018-10-01 now

E02 4k 2017-05-01 2018-12-31

E02 4.5k 2019-01-01 now

E03 3k 2018-01-01 2018-10-31

Project

Pid Pname Budget Did Project
_Start

Project
_End

P01 Healthcare with AI 300k D01 2017-07-01 2018-12-31

P02 KWS 250k D01 2017-07-01 2018-06-30

P03 Smart City with AI 400k D02 2018-01-01 now

ParticipateIn

Eid Pid ParticipateIn
_Start

ParticipateIn
_End

E01 P01 2017-07-01 2018-12-31

E02 P01 2018-01-01 2018-12-31

E02 P02 2017-07-01 2018-06-30

E03 P02 2018-01-01 2018-06-30

E01 P03 2018-01-01 2018-06-30

E02 P03 2018-10-01 now

E03 P03 2018-07-01 2018-09-30

Fig. 1. Example company temporal database.

Example 1 (Incorrect aggregate results). Consider the temporal database in Fig. 1.
Suppose we issue a query Q1 ={Employee SUM Salary Project AI DURING [2018]}
to compute the total salary of employees participating in AI projects in 2018.
Multiple projects match the keyword “AI” (P01 and P03), and two employees
E01 and E02 participated in these projects in 2018. As such, the salary of E01
and E02 will be duplicated in the join sequence relation, and simply applying
existing temporal aggregate operators, e.g., those proposed in [3,6,7,13], on the
intermediate relation of joins will give incorrect total salaries for the employees.

The work in [22] first highlights the problem of incorrect query results in
non-temporal keyword search with aggregates and group-by, and uses Object-
Relationship-Attribute (ORA) semantics [21] to remove the duplicate data when
relations capturing n-ary (n>2) relationships are joined. However, this work can-
not handle all the data duplication occurred in temporal keyword search, since
they are more prevalent due to the repeating attribute values and relationships
over time, and the join between temporal and non-temporal relations.

In this work, we propose a framework to process temporal keyword queries
involving aggregate functions, group-by and time conditions. Our framework
utilizes ORA semantics to identify object/relationship type and attributes, and
remove data duplication in the intermediate relation. Further, frequent data up-
dates over time may lead to fine-grained temporal aggregate results that are
not meaningful to users. Hence, we support aggregates over user-specified time
units such as year or month in the keyword query. Finally, a temporal attribute
may have an inherent time unit, e.g., monthly salary or daily room rate. Our
framework provides an option to compute meaningful accumulative sum over
such attributes by weighting its value with its duration. Experiment results in-
dicate the importance of these steps to return correct and meaningful results for
keyword queries over temporal databases.

2 Preliminaries

Temporal Keyword Query. We extend the temporal keyword query defined
in [9] to allow aggregate functions and group-by as follows:



Temporal Keyword Search with Aggregates and Group-By 3

< Q >::=< basic query > [< groupby cond >][< time cond >]

where < basic query > is a set of keywords {k1 k2...ki}, and each keyword can
match a tuple value, a relation or attribute name, or an aggregate MIN, MAX,
AVG, SUM or COUNT; < groupby cond > is a set of keywords {ki+1 ki+2...kj}
such that ki+1 is the reserved word GROUPBY, and the remaining keywords
match either a relation or attribute name; < time cond > contains two keywords
{kj+1 kj+2} such that kj+1 is a temporal predicate like AFTER or DURING
[2], and kj+2 is a closed time period [s, e]*.

Temporal ORM Schema Graph. [21] proposes an Object-Relationship-Mixed
(ORM) schema graph to capture the ORA semantics in a relational database.
Each node in the graph is an object/relationship/mixed node comprising an
object/relationship/mixed relation and its component relations. An object (or
relationship) relation stores all the single-valued attributes of an object (or re-
lationship) type. A mixed relation stores an object type and its many-to-one
relationship type(s). A component relation stores a multivalued attribute of an
object/relationship type. Two nodes u and v are connected by an undirected
edge if there is a foreign key-key constraint from the relations in u to those in v.

In temporal databases, an object type or relationship type becomes temporal
when it is associated with a time period indicating its lifespan [8]. An attribute
of some object/relationship type becomes temporal when its value changes over
time and the database keeps track of the changes. We extend the ORM schema
graph to a temporal ORA schema graph for temporal databases.

A node with superscript T in a temporal ORA schema graph denotes it
contains some temporal relations. A temporal relation RT is essentially a relation
R with a closed time period RT .period consisting of a start attribute and an
end attribute. The temporal ORA semantics of a temporal relation could be
identified via the relation type. A temporal object/relationship relation stores
a temporal object/relationship type, while a temporal mixed relation stores a
temporal object type with its non-temporal many-to-one relationship type(s),
and a temporal component relation stores a temporal attribute.

Fig. 2 shows the temporal ORM schema graph for the database in Fig. 1. The
object node Employee contains the temporal object relation Employee and its
temporal component relation EmployeeSalary, depicting the temporal object
Employee and the temporal attribute Salary respectively.

Annotated Query Pattern. We adopt the approach in [22] to generate a set
of annotated query patterns to depict the different interpretations of a keyword
query. Keywords are matched to relations in a temporal ORM schema graph.
Aggregates and GROUPBY are reserved keywords and are used to annotate the
query pattern according to the matches of the keywords that follow them. Note
that the time condition in keyword query is not considered in this process.

Fig. 3 shows one of query patterns generated from the query without time
condition {Employee SUM Salary Project AI} of Q1 in Example 1. The keywords

*

We use the format YYYY-MM-DD for start and end times, and allow shortened forms with
just YYYY or YYYY-MM. We will convert the short form, by setting the start/end time to the
earliest/latest date of given year or month, e.g., [2017,2018] to [2017-01-01, 2018-12-31].
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ORM Schema Graph (new)

EmployeeT WorkForT Department

ParticipateInT Project T

Legend: u Object Node u Relationship Node Mixed Nodeu

EmployeeT

SUM(Salary)
ParticipateInT Project T

Pname contains “AI”

Fig. 2. Temporal ORM schema graph
of the temporal database in Fig. 1.

ORM Schema Graph (new)

EmployeeT WorkForT Department

ParticipateInT Project T

Legend: u Object Node u Relationship Node Mixed Nodeu

EmployeeT

SUM(Salary)
ParticipateInT Project T

Pname contains “AI”

Fig. 3. Annotated query pattern generated for
query Q1.

Employee and Salary match the node Employee in the temporal ORM graph
in Fig. 2, while keywords Project and AI match the node Project. Since there
is a cycle in the temporal ORM graph, we have two ways to connect these
two nodes: via the node ParticipateIn or the nodes WorkFor −Department,
giving us two possible query interpretations. Since the keyword Salary follows
the aggregate SUM, the attribute Salary in the node Employee is annotated
with SUM, depicting the user’s search intention to find the sum of the salaries
of employees who participated in AI projects.

3 Proposed Framework

Our framework to process a temporal keyword query consists of 3 key steps:

Step 1. Generate a temporal join sequence from an annotated query pattern,
and use it to compute a join sequence relation.
Step 2. Identify a subset of attributes (called unique attribute set) from join
sequence relation and remove data duplicates on this attribute set.
Step 3. Compute temporal aggregate and group-by over the relation ob-
tained from step 2.

3.1 Generate Temporal Join Sequence

We generate one temporal join sequence from each annotated query pattern to
compute a join sequence relation. The sequence contains relations in the query
pattern augmented with selections (σ) and projections (Π), if any. The selection
is used to apply the time condition in query to each relevant temporal relation,
while the projection is used to drop attributes irrelevant to this query. These
relations are joined with natural join (./) or temporal join (./T ) [10] according
to the edge connections in the query pattern. Temporal join operator is used
between temporal relations to avoid incorrect join results [9].

Algorithm 1 gives the details. The select operator applies attribute value
conditions on the relations in a query pattern, while the project operator filters
out attributes that are not relevant to the query (Lines 1-9). The time condition
in the query is applied to each temporal relation in the query pattern. Then
the project operator is applied to each relation to preserve object/relationship
attribute identifiers, target attributes of aggregates and group-by, and attributes
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Algorithm 1: Generate Temporal Join Sequence
Input: annotated pattern P , time condition TP [s, e];
Output: a temporal join sequence J;

1 foreach node u ∈ P do
2 foreach relation R ∈ u do
3 Use select operator to apply the attribute conditions on R;
4 Let I be the set of identifier attributes for object/relationship type in R, and X,

Y be the sets of attributes applied by aggregate function and group-by
respectively;

5 if R is a temporal relation then
6 R = σperiod TP [s,e](R);

7 R = ΠI∪X∪Y∪R.period(R);

8 else
9 R = ΠI∪X∪Y (R);

10 Let Ru be the object/relationship/mixed relation in u.
11 Ju = Ru; /* Generate join sequence Ju with relations in node u */
12 foreach component relation Rc ∈ u do
13 if Rc has some attribute value conditions or is annotated by GROUPBY then
14 if Rc is temporal and Ju contains temporal relation then

15 Ju = Ju onT Rc;
16 else
17 Ju = Ju on Rc;

18 Let J = Jv for some node v ∈ P . /* Join relations from nodes in P to generate J */
19 Add the nodes adjacent to v to a queue Q;
20 while Q.notEmpty() do
21 u = Q.poll();
22 if both J and Ju contain temporal relations then

23 J = J onT Ju;
24 else
25 J = J on Ju;
26 foreach node w adjacent to u ∈ P and Jw /∈ J do
27 Queue.add(w);

28 return J;

forming the time periods. We generate the join sequence Ju for relations in each
node u (Lines 10-17), and join the relations based on the edges in the query
pattern (Lines 18-27). For temporal join, two tuples are joined if their key values
are equal and their time periods intersect. The time period in the resulting tuple
is given by the intersection of the time periods in the two tuples, and the original
time periods are dropped. Note that a component relation is included in the join
sequence if and only if it is annotated with group-by or attribute value conditions.

For example, the temporal join sequence generated for the query pattern in
Fig. 3 is J = R1 ./

T R2 ./
T R3 ./

T R4 where
R1 = ΠEid∪Salary∪period(σϕ(SalaryT )),

R2 = ΠEid∪period(σϕ(EmployeeT )),

R3 = ΠEid∪Pid∪period(σϕ(ParticipateInT )),

R4 = ΠPid∪period(σPname contains ”AI”∪ϕ(ProjectT )).

The select condition “ϕ = RT .period TP [s, e]” denotes to apply time condition
“TP [s, e]” to time period RT .period, where TP denotes a temporal predicate.

We have 3 types of attributes in the join sequence relation RJ obtained from
the temporal join sequence: (1) all the key attributes of the relations in the query
pattern, (2) attributes involved in the aggregate function and the group-by, and
(3) time period attributes (start and end), if any. Note that attributes that
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are involved only in the select conditions are not included in the join sequence
relation, since they are not used subsequently.

3.2 Remove Duplicate Data

Generating the join sequence relation may introduce data duplicates on the
attributes related to aggregates and group-by, which may lead to incorrect ag-
gregate results. This is so because relations in the temporal join sequence have
many-to-one or many-to-many relationships, multivalued and time period at-
tributes. Note that a join sequence relation RJ has no duplicate tuples, but it
may have data duplicates with respect to a unique attribute set U ⊂ RJ depicting
the ORA semantics the aggregate function and group-by applied to.

We determine the attributes in U as follows. Let X and Y be the sets of
attributes that the aggregate function and group-by are applied to respectively.
Note that Y = ∅ if the keyword query does not have GROUPBY reserved word.

Case 1. X only contains the identifier attribute(s) of some object/relationship.
Unique objects or relationships are identified via the values of their identifiers.
From the temporal ORM schema graph, we know whether X is the identifier
of a non-temporal or temporal object/relationship type. For non-temporal ob-
ject/relationship type, U = (X,Y ). Otherwise, the time period attributes start
and end inRJ are included to remove duplicates, i.e., U = (X,Y,RJ .start, RJ .end).

Case 2. X only contains a non-prime attribute A.
Let oid be the identifier attribute(s) of the object/relationship type for A.
If A is non-temporal, U = (oid,A, Y ). Otherwise, A is temporal and U =
(oid,A, Y,RJ .start, RJ .end). The reason why oid is added to U is that we need
to distinguish the same attribute value of different objects/relationships.

If U does not contain time period attributes start and end, then two tuples in
RJ are duplicates iff their U values are the same. Otherwise, we say that two
tuples are duplicates over time iff their U − {RJ .start, RJ .end} values are the
same and time periods of those two tuples intersect. Note that the duplication
occurs in the intersected time period. We use the functional dependency (FD)
theory to determine if there are data duplicates over U . Let K be the key of RJ .
If K → U is a full FD, and not a transitive FD, then there is no data duplicate
on U . Note that when both K and U contain time period attributes, the FD
should hold for the same time points in the corresponding time periods.

Algorithm 2 gives the details to remove data duplicates from RJ over U . Line
2 uses projection to remove data duplicates if U does not contain time period
attributes. Otherwise, let U ′ = U −{start, end} be the non-period attributes set
in U . We first sort the tuples based on U ′∪{start} (lines 4-7). Then, we perform a
linear scan to remove data duplication over time by merging the overlapped time
periods for tuples with same values on U ′ (Lines 8-17). The time complexity of
this step is O(n ∗ log(n))*, where n is the number of tuples in RJ .

*Projection over RJ requires O(n) time, sorting the tuples requires O(n ∗ log(n))
time, and linear scan to remove duplicates over time takes O(n) time.
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Algorithm 2: Remove Duplicate Data
Input: join sequence relation RJ , unique attribute set U
Output: Relation RU with no duplicate data

1 if {start, end} 6⊂ RJ then
2 RU = ΠU (RJ );
3 else
4 RU = ∅; prev = null;

5 U ′ = U − {start, end};
6 RΠ = ΠU (R);

7 Rsorted = RΠ .sort(key = U ′ ∪ {start});
8 foreach tuple t ∈ Rsorted do
9 if prev is null then

10 prev = t;

11 else if prev.U ′== t.U ′ and prev.end >= t.start then
12 prev.end = max(prev.end, t.end);
13 else
14 RU .append(prev);
15 prev = t;

16 if prev 6= null then
17 RU .append(prev);

18 return RU

Example 2 (Case 1: Temporal object). Consider query {COUNT Employee GROUPBY
Project DURING [2017,2018]} to count employees who participated in each project
between 2017 to 2018. We generate a join sequence relation RJ from relations
Employee, ParticipateIn, Project. Since COUNT is applied on Eid of temporal
object relation Employee, and GROUPBY on Pid of temporal object relation
Project, we have U = (Eid, P id,RJ .start, RJ .end).

Example 3 (Case 2: Temporal attribute). Recall query Q1 ={Employee SUM
Salary Project AI DURING [2018]} in Example 1, and its join sequence relation
with duplicated data highlighted in Fig. 4. From the temporal ORM schema
graph, we know that Salary is a temporal attribute of the object Employee whose
identifier is Eid. Hence, U = {Eid, Salary, Join Start, Join End}. Algorithm 2
is used to remove the data duplicates on U .

Example 4 (Case 2: Non-temporal attribute.). Consider query Q2 ={Employee
AVG AGE() department CS DURING [2018]} where AGE() is a predefined func-
tion to compute the difference in the years between attribute DOB in Employee
and the start year in the query period. Fig. 5 shows the join sequence rela-
tion obtained from temporal join sequence with relations Employee, WorkFor
and Department. The tuples with data duplicates are highlighted. Since an em-
ployee’s age is computed from the non-temporal attribute DOB of the temporal
object type Employee, we identify the unique values on U = {Eid,DOB} from
the join sequence relation, i.e., {(E02,1978-05-20), (E03,1990-10-15)}. Then the
age for E02 is 40 and E03 is 28. Hence, the average age is 34.

3.3 Compute Temporal Aggregates

Let RU be the join sequence relation with no data duplicates over unique at-
tribute set U . If RU does not contain time period attributes, a traditional ag-
gregate is computed over it. Otherwise, a temporal aggregate is computed. Our
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JoinSequenceRelation_2

Eid Did DOB Join_Start Join_End

E02 D01 1978-05-20 2018-01-01 2018-02-28

E02 D01 1978-05-20 2018-05-01 2018-12-31

E03 D01 1990-10-15 2018-01-01 2018-10-31

JoinSequenceRelation_1

Eid Salary(per month) Pid Join_Start Join_End

E01 3k P01 2018-01-01 2018-03-31

E01 3.5k P01 2018-04-01 2018-09-30

E01 4k P01 2018-10-01 2018-12-31

E02 4k P01 2018-01-01 2018-12-31

E01 3k P03 2018-01-01 2018-03-31

E01 3.5k P03 2018-04-01 2018-06-30

E02 4k P03 2018-10-01 2018-12-31

E03 3k P03 2018-07-01 2018-09-30

Fig. 4. join sequence relation for Q1.

JoinSequenceRelation_2

Eid Did DOB Join_Start Join_End

E02 D01 1978-05-20 2018-01-01 2018-02-28

E02 D01 1978-05-20 2018-05-01 2018-12-31

E03 D01 1990-10-15 2018-01-01 2018-10-31

JoinSequenceRelation_1

Eid Salary(per month) Pid Join_Start Join_End

E01 3k P01 2018-01-01 2018-03-31

E01 3.5k P01 2018-04-01 2018-09-30

E01 4k P01 2018-10-01 2018-12-31

E02 4k P01 2018-01-01 2018-12-31

E01 3k P03 2018-01-01 2018-03-31

E01 3.5k P03 2018-04-01 2018-06-30

E02 4k P03 2018-10-01 2018-12-31

E03 3k P03 2018-07-01 2018-09-30

Fig. 5. join sequence relation for Q2.

Jan (year 2018)Mar Jul SepMay Nov

SUM(Salary) at 
each time point

Jan (year 2018)Mar Jul Sep

7k

May Nov

E01, 3k E01, 3.5k E01, 4k

E02, 4k

E03, 3k

7.5k 10.5k 8k

SUM(Salary) at
each time point

SUM 
(Salary)

Aggr_Start Aggr_End

7k 2018-01-01 2018-03-31

7.5k 2018-04-01 2018-06-30

10.5k 2018-07-01 2018-09-30

8k 2018-10-01 2018-12-31

Monthly salaries 
of employees 
participating in AI 
projects during 
2018. (Q1)

(a)

Jan (year 2018)Mar Jul SepMay Nov

SUM(Salary) at 
each time point

Jan (year 2018)Mar Jul Sep

7k

May Nov

E01, 3k E01, 3.5k E01, 4k

E02, 4k

E03, 3k

7.5k 10.5k 8k

SUM(Salary) at each time point

SUM (Salary) Aggr_Start Aggr_End

7k 2018-01-01 2018-03-31

7.5k 2018-04-01 2018-06-30

10.5k 2018-07-01 2018-09-30

8k 2018-10-01 2018-12-31

Monthly salaries 
of employees 
participating in AI 
projects during 
2018. (Q1)

Eid Ename DOB Join_Start Join_End

E01 Alice 1985-03-12 2017-01-01 2017-06-30

E02 Bob 1978-05-20 2017-05-01 2017-12-31

E03 John 1990-10-15 2018-01-01 2018-06-30

E03 John 1990-10-15 2018-10-01 2018-10-31

(b)

Fig. 6. (a) Sum of salaries and (b) Aggregate results at each time point for Q1.

framework supports two types of temporal aggregate computation: (1) aggregate
at each time point, and (2) aggregate over user-specified time unit. Moreover,
for attributes with inherent time unit, such as monthly salary, we provide the
option of computing a time-weighted sum to generate meaningful results.

Aggregate at Each Time Point. This captures the aggregate result at each
time point along a timeline. A new aggregate value is computed using temporal
aggregate operators [6,7] when the data is updated, and each aggregate value
is associated with a non-overlapped time period indicating when the value is
computed. Fig. 6(a) visualizes the non-duplicated data in RU of query Q1, and
how the temporal aggregates at each time point are computed. The salary of
employees E01, E02 and E03 change over time, and each change leads to a new
aggregate result. The timeline in Fig. 6(a) is segmented by each salary change,
and a sum is computed over the monthly salaries in each segment. Fig. 6(b) gives
the aggregate results, capturing the changes in the sum of the monthly salary
for employees participating in AI projects in 2018.

Aggregate over User-Specified Time Unit. Computing aggregate at each
time point may lead to overly detailed results when updates are frequent, e.g.,
bank account balances. Thus, we provide users the option of specifying the gran-
ularity of the time unit with a reserved word YEAR, MONTH or DAY in the
group-by condition. This will return one aggregate tuple per year or month or
day respectively. For example, the query Q3 ={COUNT Employee Department
CS GROUPBY YEAR DURING [2017,2018]} counts employees who have worked
for the CS department each year from 2017 to 2018. Two results will be returned
for the COUNT aggregate: one for 2017, and another for 2018.

Fig. 7(a) gives the visualization of data used to compute the results for query
Q3. If we simply utilize the operator in [3] which applies the traditional aggregate
function to tuples whose time periods overlap with the specified time unit, we
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2017-092017-01 2018-01 2019-012017-05 2018-052018-03

E01

E02 E02

E03Employees working 
in department CS 
during 2017 to 2018.

2017-01 2018-01 2019-012017-05 2017-09 2018-05 2018-112018-03

COUNT(Eid) at 
each time point 1 2 1 2 121

2018-11

COUNT(Eid) at each time point

COUNT
(Eid)

Aggr_Start Aggr_End

1 2017-01-01 2017-04-30

2 2017-05-01 2017-08-31

1 2017-09-01 2017-12-31

2 2018-01-01 2018-02-28

1 2018-03-01 2018-04-30

2 2018-05-01 2018-10-31

1 2018-11-01 2018-12-31

2017-092017-01 2018-01 2019-012017-05 2018-052018-03

E01

E02 E02

E03

2017-01 2018-01 2019-012017-05 2017-09 2018-05 2018-112018-03

1 2 1 2 121
2018-11

E01

E02 E02

E03Employees working 
in department CS 
during 2017 to 2018.

2017-01 2018-01 2019-012017-05 2017-09 2018-05 2018-112018-03

(a)

2017-092017-01 2018-01 2019-012017-05 2018-052018-03

E01

E02 E02

E03Employees working 
in department CS 
during 2017 to 2018.

2017-01 2018-01 2019-012017-05 2017-09 2018-05 2018-112018-03

COUNT(Eid) at 
each time point 1 2 1 2 121

2018-11

COUNT(Eid) at each time point

COUNT
(Eid)

Aggr_Start Aggr_End

1 2017-01-01 2017-04-30

2 2017-05-01 2017-08-31

1 2017-09-01 2017-12-31

2 2018-01-01 2018-02-28

1 2018-03-01 2018-04-30

2 2018-05-01 2018-10-31

1 2018-11-01 2018-12-31

(b)

Fig. 7. (a) Data visualization (b) Aggregate results at each time point for Q3.

will get incorrect results for 2018 because the same employee E02 is counted
twice, and the different work periods of employees are not taken into account
(see Fig. 8(a)). Instead, we compute a summary on top of the aggregate results
at each time point based on the user-specified time unit (per year/month/day).
The idea is to determine the min, max and time-weighted average for tuples
whose time periods overlap with the time unit. The min and max reflect the
extreme aggregate values over each time unit, while the time-weighted average
captures the time period of the aggregate result at each time point.

Let Raggr be the relation of aggregate results obtained at each time point.
We use the user-specified time unit to segment the timeline in Raggr into a set
of consecutive non-overlap time periods W . Then we find the tuples in each
time period [s, e] ∈ W , and compute the max, min, time-weighted average over
these tuples, as a summary of aggregate results over this [s, e]. The max and min
values can be computed directly, while the average is obtained as follows:

AV GT (Raggr, [s, e]) =

∑
t∈(Raggr./T [s,e]) t.value× |t.period|

|[s, e]|
(1)

where Raggr ./
T [s, e] are the tuples in Raggr that overlap with time period [s, e],

each tuple value t.value is weighted by the length of its time period |t.period| to
compute a time-weighted sum, and the weighted sum is divided by the length
of period [s, e] to compute the time-weighted average. Note that the time unit
used to compute the length of t.period and [s, e] are the same.

Fig. 8(b) shows the results for Q3 after computing the max, min and time-
weighted average over each year based on the aggregate results at each time
period in Fig. 7(b). For 2017, the min and max count of employees in the CS
department is 1 and 2 respectively. The time-weighted average in 2017 is given

by 1×4(months)+2×4(months)+1×4(months)
12(months) = 1.33 indicating that there are 1.33

full-time equivalent employees in the CS department in 2017. In the same way,
we compute that there are 1.67 full-time equivalent employees in 2018.

Algorithm 3 gives the detail of the aggregate computation. The key idea
is to conduct a sort-merge temporal join between relation Raggr and the time
line segmentation with given user-specified time unit w. We first generate the
startList of each segment and sort Raggr and startList in ascending order over
start time. Since Raggr might have some group-by attributes, its tuples are first
sorted by the group-by attributes in Y and then by the start time within each
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2017-092017-01 2018-01 2019-012017-05 2018-052018-03

E01

E02 E02

E03Employees working 
in department CS 
during 2017 to 2018.

2017-01 2018-01 2019-012017-05 2017-09 2018-05 2018-112018-03

COUNT(Eid) at 
each time point

2017-01 2018-01 2019-01

COUNT(Eid) over 
time period
(per year)

1 2 1 2 121

Max:    2
Min:    1
AVGT:  1.33

Max:    2
Min:    1
AVGT:  1.67

2018-11

COUNT(Eid) over time period (per year)

MIN MAX AVGT Aggr_Start Aggr_End

1 2 1.33 2017-01-01 2017-12-31

1 2 1.67 2018-01-01 2018-12-31

COUNT(Eid) at each time point

COUNT
(Eid)

Aggr_Start Aggr_End

1 2017-01-01 2017-04-30

2 2017-05-01 2017-08-31

1 2017-09-01 2017-12-31

2 2018-01-01 2018-02-28

1 2018-03-01 2018-04-30

2 2018-05-01 2018-10-31

1 2018-11-01 2018-12-31

COUNT (*) Aggr_Start Aggr_End

2 2017-01-01 2017-12-31

3 2018-01-01 2018-12-31

2017-01 2018-01 2019-01

COUNT(Eid) over 
time period
(per year)

Max:    2
Min:    1
AVGT:  1.33

Max:    2
Min:    1
AVGT:  1.67

COUNT(Eid) per year

MIN MAX AVGT Aggr_Start Aggr_End

1 2 1.33 2017-01-01 2017-12-31

1 2 1.67 2018-01-01 2018-12-31

COUNT (*) Aggr_Start Aggr_End

2 2017-01-01 2017-12-31

3 2018-01-01 2018-12-31

(a) Incorrect results using [3] (b) Correct results using our approach

Fig. 8. Results of count of employees per year in Q3.

group (lines 1-3). Then, we conduct a linear scan on tuples in Raggr, and handle
those tuples belonging to the same group with function RwPerGroup() (lines 4-7).
This function takes the row index i referring to the first tuple of current group
as input, and return the row index of the first tuple of next group as output.

Within function RwPerGroup(), we go over each segment represented by its
start time in startList, and find the tuples inRaggr corresponds to each segment.
First, the segment that do not overlap with the time period of current tuple t
are skipped (line 12-14). Then, for the segment with corresponding tuples, we
compute the max, min and time-weighted average as we introduced before on
those tuples (lines 15-24). As the tuples in Raggr are handled one by one, we
will reach the end of relation Raggr (lines 25-26) or tuples in next group (lines
27-28), which results in the exit of this function.

Aggregate over Attributes with Inherent Time Unit. Some attributes
have inherent time units, e.g., monthly salary or daily room rate, and it is often
useful to compute the sum of these attributes over their time unit. Such inherent
time unit is obtained from the metadata of database. For instance, Fig. 1 has an
attribute Salary which captures the monthly salary of employees, i.e., the time
unit of Salary is per month.

Similar to the time-weighted average in Equation (1), we also weight the
attribute values to compute the sum of a temporal attribute with an inherent
time unit over a time period. Here, the weight is the ratio of the length of the
attribute’s time period over the inherent time unit. Given a join sequence relation
with duplicates removed RU , let Az be a temporal attribute with an inherent
time unit z. The accumulated sum SUMT over [s, e] of Az is given by

SUMT (RU , Az, [s, e]) =
∑

t∈(RU./T [s,e])

t.Az ×
|t.period|

z
(2)

Note that if we compute both SUMT and AV GT over the same time period
[s, e], then we can derive AV GT directly as SUMT × z

|[s,e]| .

Consider query Q′1 ={Employee SUM Salary Project AI GROUPBY YEAR
DURING [2018]} which is similar to Q1 but has a group-by condition with user-
specified time unit YEAR. Fig. 9(a) shows the aggregate results for Q′1 computed
based on the aggregate results in Fig. 6(b). Since Salary has an inherent time
unit “month” (z =1(month)), we compute an accumulated SUM in 2018 based

on the unique salaries in Fig. 6(a): 3k× 3(months)
1(month) + 3.5k× 6(months)

1(month) + ...+ 3k×
3(months)
1(month) = 99k. The result is shown in Fig. 9(b), which reflects the actual sum

of salary paid to employees participating in AI projects in 2018.
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Algorithm 3: Aggregate over User-Specified Time Unit
Input: Aggregate results at each time point Raggr, group-by attribute set Y , time unit w
Output: Relation with aggregate results over user-specified time unit Rw

1 Partition the timeline in Raggr with w and let startList be the list of start time of each
segment;

2 startList.sort(asc = True);
3 Raggr.sort(key = Y ∪ {start}, asc = True);
4 Rw = ∅; i = 0;
5 while i 6= −1 and i < len(Raggr) do

/* Compute aggregate over time unit w for tuples belonging to the same group */
6 i = RwPerGroup(Raggr ,Rw ,Y ,startList,w,i);

7 return Rw

8 Function RwPerGroup(Raggr,Rw,Y ,startList,w,i):
9 t = Raggr.atRow(i); grp = t.Y ; j = 0;

10 while j < len(startList) do
11 s = startList[j]; e = s+ |w| − 1;

/* Skip the segment not overlapping with t.period */
12 while not isOverlapped([s,e],t.period) do
13 j+ = 1;
14 s = startList[j]; e = s+ |w| − 1;

/* Compute max, min and time-weighted average */
15 maxV = −∞; minV = +∞; sumV = 0;
16 while t 6= null and t.Y == grp and isOverlapped([s,e],t.period) do
17 maxV = max(maxV, t.value);
18 minV = min(minV, t.value);
19 l = min(t.end, e)−max(t.start, s);
20 sumV = sumV + t.value ∗ l;
21 i+ = 1;
22 t = Raggr.atRow(i);

23 avgV = sumV/|w|;
24 Rw = Rw ∪ {(grp,maxV,minV, avgV, s, e)}

/* Check if tuple t still belongs to current group */
25 if t == null then
26 return -1;
27 else if t.Y ! = grp then
28 return i;
29 else
30 j+ = 1;
31 s = startList[j]; e = s+ |w| − 1;

Jan (year 2018)Mar Jul SepMay Nov

SUM(Salary) with 
data-period 
semantics

Jan (year 2018)Mar Jul Sep

(3k+4k
=7k)

Jan (year 2018)Mar Jul Sep

SUM(Salary) with 
specified-period 
semantics (year)

(3k+3.5k+4k+4k+3k = 17.5k)

May

May

Nov

Nov

Non-redundant Salaries

Eid Salary(per 
month)

Pid Join_Start Join_End

E01 3k P01 2018-01-01 2018-03-31

E01 3.5k P01 2018-04-01 2018-09-30

E01 4k P01 2018-10-01 2018-12-31

E02 4k P01 2018-01-01 2018-12-31

E03 3k P03 2018-07-01 2018-09-30

E01, 3k, P01 E01, 3.5k, P01 E01, 4k, P01

E02, 4k, P01

E03, 3k, P03

(3.5k+4k
=7.5k)

(3.5k+4k+3k
=10.5k)

(4k+4k
=8k)

Q1={Employee SUM salary Project AI DURING [2018]}
Q1’={Employee SUM salary Project AI GROUPBY YEAR DURING [2018]}

Remove the data duplication over the same time period.

MIN MAX AVGT Start End

7k 10.5k 8.25k 2018-01-01 2018-12-31

Eid Pid ParticipateIn
_Start

ParticipateIn
_End

E01 P01 2017-07-01 2018-12-31

E02 P01 2018-01-01 2018-12-31

E03 P03 2018-07-01 2018-09-30

JoinedTable_4

Eid Join_Start Join_End

E01 2017-01-01 2017-06-30

E02 2017-05-01 2017-12-31

E03 2018-01-01 2018-06-30

E03 2018-10-01 2018-10-31

SUM with data-period semantics

SUM(Salary) Aggr_Start Aggr_End

21k 2018-01-01 2018-03-31

22.5k 2018-04-01 2018-06-30

31.5k 2018-07-01 2018-09-30

24k 2018-10-01 2018-12-31

SUM(Salary) Aggr_Start Aggr_End

99k 2018-01-01 2018-12-31

(a) Results using our approach (b) Accumulated SUM

Fig. 9. Results of aggregate per year for Q′
1.

4 Experimental Evaluation

We implemented our algorithms in Python and evaluated the effectiveness of our
proposed approach to process temporal keyword queries correctly. We use the
temporal operators in [7] to compute the temporal join in temporal join sequence
and the temporal aggregate at each time point.

We synthesized a database with temporal ORA semantics, including tem-
poral many-to-one relationship type, temporal many-to-many relationship type,
and temporal attribute, which often lead to data duplicates in the join sequence
relation. Table 1 shows the schema. We have 10,000 employees, 121 departments
and 5,000 projects. The average number of salaries per employee is 3.86, average
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Table 1. Schema of company database

Employee(Eid, Employee Start, Employee End, Ename, DOB)
Department(Did, Dname)
Project(Pid, Project Start, Project End, Pname, Budget, Did)
EmployeeSalary(Eid, Salary Start, Salary End, Salary(per month))
WorkFor(Eid, WorkFor Start, WorkFor End, Did)
ParticipateIn(Eid, Pid, ParticipateIn Start,ParticipateIn End)

number of departments per employee is 1.23, average number of projects per
employee is 11.26, and the average number of projects per department is 333.3.

Correctness of Query Results. For each temporal keyword query in Table 2,
we examine the correctness of the temporal aggregate results before and after
removing duplicate data in the join sequence relation. The correct results are
obtained from data that has no duplicates. Table 3 shows the results, as well as
the size of the join sequence relation in terms of the number of tuples and at-
tributes, and the percentage of duplicate tuples. We observe that the percentage
of duplicate tuples in the join sequence relations for different keyword queries
ranges from 1.3% to 99.5%. The data duplication arises from repeats of the same
temporal relationship (C1), join between temporal and non-temporal semantics
(C2), keyword matching multiple tuples (C3), and join between multiple many-
to-many and/or many-to-one relationships (C4), as we will elaborate.

Queries C1 and C2 have aggregate functions over non-temporal semantics.
The aggregate in C1 is applied to a predefined function AGE() which computes
the age of employees based on the difference between the start time in the query
and the non-temporal attribute DOB in relation Employee. Since one employee
could leave a department and return to the same department in 2019, so his age
would occur multiple times for this department, leading to an incorrect average
employee age. By removing the data duplication on unique attribute set U =
(Eid,DOB,Did) from join sequence relationRJ =(Eid,DOB,Did,Join Start,Join End),
we are able to obtain correct average age.

The aggregate in C2 is applied to the non-temporal object Department, and
the cause of duplicate data in the join sequence relation is due to the join be-
tween the non-temporal relation Department and the temporal relations Work-
For, Employee and EmployeeSalary. A department is duplicated many times in
this process, since it can have many employees with salaries more than 10000,
and an employee can have many salary records. By removing data duplication
on U =(Did) from RJ =(Did,Join Start,Join End), we get the correct result 121,
while the incorrect result is 23739 without the duplicates removed.

Queries C3 to C6 have aggregates over temporal semantics. Temporal ag-
gregate operators are used to compute aggregate at each time point, and the
data duplicates over time periods would lead to incorrect results in the cor-
responding time periods. The reason for duplicate data in C3 is query key-
word matching multiple tuples, i.e., multiple projects match the keyword ”AI”
with common employees, leading to 17.9% of salary values are duplicated over
time. We remove the data duplication on U =(Eid,Salary,Join Start,Join End)
from RJ =(Eid,Salary,Pid,Did,Join Start,Join End) and obtain the correct sum of
salaries over time.
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Table 2. Temporal keyword queries and their search intentions.

Keyword Query Search Intention
C1 Employee AVG AGE() GROUPBY Department

DURING [2019]
Compute the average age of employees in each de-
partment in 2019.

C2 COUNT Department Employee Salary > 10000
DURING [2010,2019]

Count the departments which had employee salary
larger than 10,000 during 2010 to 2019.

C3 Employee SUM salary Project AI DURING
[2015,2019]

Sum the monthly salaries of employee working in
AI project during 2015 to 2019.

C4 COUNT Employee Project Department CS DUR-
ING [2019]

Count the employees who participated in projects
belonging to department CS in year 2019.

C5 Employee MAX Salary GROUPBY Department
DURING [2010,2019]

Compute the maximum salary for employees work-
ing in each department during 2010 to 2019.

C6 COUNT Project Budget>= 2000000 GROUPBY
Department DURING [2018,2019]

Count projects whose budget is larger or equal to
2,000,000 in each department during 2018 to 2019.

Table 3. Correctness of results before and after removing duplicates.

Query
Size of join sequence relation %Duplicate Correct before Correct after

#tuple #attribute tuples duplicate removed duplicate removed
C1 12295 6 1.3 N Y
C2 23739 5 99.5 N Y
C3 15489 10 17.9 N Y
C4 302 6 81.8 N Y
C5 40917 5 0 Y Y
C6 1922 4 0 Y Y

For query C4, the reason for its data duplicates is due to the join be-
tween many-to-many relationship type in relation ParticipateIn and the many-
to-one relationship type in relation Project. Specifically, the department CS
could have multiple projects involving the participation of same employees,
and such employees are duplicated in the join sequence relation. By identify-
ing U =(Eid,Join Start,Join End) from join sequence relation RJ =(Eid,Pid,Did,
Join Start, Join End), we are able to remove then 81.8% duplicate employees over
time and get the correct employee count.

Queries C5 to C6 do not have data duplicates in the join sequence rela-
tion. For query C5, the aggregate MAX is not an accumulative function, hence
the results are not affected by data duplicates, even if they exist. The reason
that C5 and C6 do not have data duplication is that they have identical unique
attribute set U and temporal join sequence relation RJ . For C5, U = RJ =
(Eid,Salary,Did,Join Start,Join End). For C6, U = RJ = (Pid,Did,Join Start,Join End).
Therefore, there is no duplicates on U to be removed.

Usefulness of Aggregate over User-Specified Time Unit. When an ag-
gregate function is applied to some temporal semantics, a temporal aggregate
operator is required to compute the aggregate at each time point (recall Sec-
tion 3.3). Table 4 shows the number of tuples in the result table for queries C3
to C6, and a sample of the aggregate results. The average length of the time
period for the aggregate results of C3 to C6 are 1.01, 13.51, 19.65, 1.13 days,
respectively. These results are rather fine-grained due to the frequent updates
to the temporal database. We see that some of the results have the same aggre-
gate values in the consecutive time periods, e.g., query C5. This is because the
temporal aggregate computation follows the change preservation property [4],
which implies that a new tuple will be generated in the result table based on the
update even though it does not lead to a new aggregate value. Hence, we provide
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Table 4. Sample results for temporal aggregate at each time point.

Q# #Tuples Sample aggregate results Q# #Tuples Sample aggregate results

C3 1807

Aggr_Start Aggr_End SUM(Salary)

2015-01-01 2015-01-01 14657665

2015-01-02 2015-01-02 14668065

2015-01-03 2015-01-03 14668938

2015-01-04 2015-01-04 14652725

C3

Aggr_Start Aggr_End COUNT(Eid)

2019-01-01 2019-02-01 36

2019-02-02 2019-02-20 36

2019-02-21 2019-02-23 36

2019-02-24 2019-02-26 37

C4

Did Aggr_Start Aggr_End MAX(Salary)

D1 2010-03-16 2010-03-16 3300

D1 2010-03-17 2010-03-17 3300

D1 2010-03-18 2010-03-18 3300

D1 2010-03-19 2010-03-19 3300

C5

Did Aggr_Start Aggr_End COUNT(Pid)

D1 2018-01-01 2018-01-01 78

D1 2018-01-02 2018-01-02 79

D1 2018-01-03 2018-01-03 79

D1 2018-01-04 2018-01-04 79

C6

C4 27

Aggr_Start Aggr_End SUM(Salary)

2015-01-01 2015-01-01 14657665

2015-01-02 2015-01-02 14668065

2015-01-03 2015-01-03 14668938

2015-01-04 2015-01-04 14652725

C3

Aggr_Start Aggr_End COUNT(Eid)

2019-01-01 2019-02-01 36

2019-02-02 2019-02-20 36

2019-02-21 2019-02-23 36

2019-02-24 2019-02-26 37

C4

Did Aggr_Start Aggr_End MAX(Salary)

D1 2010-03-16 2010-03-16 3300

D1 2010-03-17 2010-03-17 3300

D1 2010-03-18 2010-03-18 3300

D1 2010-03-19 2010-03-19 3300

C5

Did Aggr_Start Aggr_End COUNT(Pid)

D1 2018-01-01 2018-01-01 78

D1 2018-01-02 2018-01-02 79

D1 2018-01-03 2018-01-03 79

D1 2018-01-04 2018-01-04 79

C6
C5 427,101

Aggr_Start Aggr_End SUM(Salary)

2015-01-01 2015-01-01 14657665

2015-01-02 2015-01-02 14668065

2015-01-03 2015-01-03 14668938

2015-01-04 2015-01-04 14652725

C3

Aggr_Start Aggr_End COUNT(Eid)

2019-01-01 2019-02-01 36

2019-02-02 2019-02-20 36

2019-02-21 2019-02-23 36

2019-02-24 2019-02-26 37

C4

Did Aggr_Start Aggr_End MAX(Salary)

D1 2010-03-16 2010-03-16 3300

D1 2010-03-17 2010-03-17 3300

D1 2010-03-18 2010-03-18 3300

D1 2010-03-19 2010-03-19 3300

C5

Did Aggr_Start Aggr_End COUNT(Pid)

D1 2018-01-01 2018-01-01 78

D1 2018-01-02 2018-01-02 79

D1 2018-01-03 2018-01-03 79

D1 2018-01-04 2018-01-04 79

C6

C6 9,690

Aggr_Start Aggr_End SUM(Salary)

2015-01-01 2015-01-01 14657665

2015-01-02 2015-01-02 14668065

2015-01-03 2015-01-03 14668938

2015-01-04 2015-01-04 14652725

C3

Aggr_Start Aggr_End COUNT(Eid)

2019-01-01 2019-02-01 36

2019-02-02 2019-02-20 36

2019-02-21 2019-02-23 36

2019-02-24 2019-02-26 37

C4

Did Aggr_Start Aggr_End MAX(Salary)

D1 2010-03-16 2010-03-16 3300

D1 2010-03-17 2010-03-17 3300

D1 2010-03-18 2010-03-18 3300

D1 2010-03-19 2010-03-19 3300

C5

Did Aggr_Start Aggr_End COUNT(Pid)

D1 2018-01-01 2018-01-01 78

D1 2018-01-02 2018-01-02 79

D1 2018-01-03 2018-01-03 79

D1 2018-01-04 2018-01-04 79

C6

an option that allows users to specify the time unit, e.g., year or month, in the
keyword query’s group-by condition. Then we will compute one aggregate tuple
for each time unit based on the previous aggregate results at each time point.

We extend queries C3 to C6 in Table 2 with time units in the group-by
condition such that the results of C3, C5 and C6 are grouped by year, and that
of C4 by the month. Table 5 shows the new queries C3’ to C6’, as well as their
statistics and sample aggregate results. We observe that the results of C3’ to
C6’ are more meaningful and easier to understand compared to the results in
Table 4. This is because the time period in the results are computed based on
user-specified time unit and they are significantly longer than the time periods
in the original queries C3 to C6.

Consider query C5’ in Table 5. By including a GROUPBY YEAR in the
keyword query, we have one tuple generated for each combination of department
and year. The first tuple in results indicates that for department D1 and year
2010, the minimum of the employees’ maximum monthly salary is 3300, while the
maximum is 20,000. Given an employee’s maximum monthly salary over time,
the AV GT gives an average by considering the duration of each maximum salary,
so users will know that the time-weighted average maximum salary is 13303.44.
Similarly, the first tuple in results of query C6’ indicates that for department D1
and year 2018, the minimum number of projects with a budget larger than or
equal to two million is 78, while the maximum is 90. By considering the duration
of such projects, there are 82.7 equivalent projects with a duration of one year.

5 Related Work

Existing works on keyword search over temporal databases have focused on im-
proving query efficiency [12,15] and identifying query interpretations [9]. The
work in [12] annotates parent nodes in a data graph with time boundaries com-
puted from its child nodes, while the work in [15] extends the traditional keyword
search approach BANKS[1] with time dimension. The work in [9] uses ORA se-
mantics to apply the time condition in a query. These works do not support
aggregate functions and group-by in their temporal keyword query.

SQAK [18] is the first work that supports keyword search with aggregate
functions and group-by over non-temporal relational databases. However, it does
not handle the data duplication in the join sequence relation and may return
incorrect aggregate results. PowerQ [22] addresses the data duplication caused
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Table 5. Statistics and sample results for keyword queries involving temporal aggre-
gates over user-specified time unit.

Keyword Query #Tuple Sample aggregate results

C3’
Employee SUM salary
Project AI GROUPBY
YEAR DURING [2015,2019]

5
Aggr_Start Aggr_End Min

(SUM(Salary))
Max

(SUM(Salary))
AVGT

(SUM(Salary))

2015-01-01 2015-12-31 14115375 16122708 15360017.46

2016-01-01 2016-12-31 15357130 16005648 15651395.31

2017-01-01 2017-12-31 15136870 15897157 15538076.16

2018-01-01 2018-12-31 15408131 16535220 16106415.25

C3‘’

C4’

Aggr_Start Aggr_End Min
(COUNT(Eid))

Max
(COUNT(Eid))

AVGT

(COUNT(Eid))

2019-01-01 2019-01-31 36 36 36.00

2019-02-01 2019-02-28 36 38 36.25

2019-03-01 2019-03-31 37 38 37.58

2019-04-01 2019-04-30 37 39 37.93

C4’ COUNT Employees Project
Department CS GROUPBY
MONTH DURING [2019]

12

Aggr_Start Aggr_End Min
(SUM(Salary))

Max
(SUM(Salary))

AVGT

(SUM(Salary))

2015-01-01 2015-12-31 14115375 16122708 15360017.46

2016-01-01 2016-12-31 15357130 16005648 15651395.31

2017-01-01 2017-12-31 15136870 15897157 15538076.16

2018-01-01 2018-12-31 15408131 16535220 16106415.25

C3‘’

C4’

Aggr_Start Aggr_End Min
(COUNT(Eid))

Max
(COUNT(Eid))

AVGT

(COUNT(Eid))

2019-01-01 2019-01-31 36 36 36.00

2019-02-01 2019-02-28 36 38 36.25

2019-03-01 2019-03-31 37 38 37.58

2019-04-01 2019-04-30 37 39 37.93

C5’ Employee MAX salary
GROUPBY Department
YEAR DURING [2010,2019]

22,990

C5’

C6’

Did Aggr_Start Aggr_End Min
(MAX(Salary))

Max
(MAX(Salary))

AVGT

(MAX(Salary))

D1 2010-03-16 2010-12-31 3300 20000 13303.44

D1 2011-01-01 2011-12-31 20000 20000 20000.00

D1 2012-01-01 2012-12-31 20000 21600 20935.52

D1 2013-01-01 2013-12-31 21600 21600 21600.00

Did Aggr_Start Aggr_End Min
(COUNT(Pid))

Max
(COUNT(Pid))

AVGT

(COUNT(Pid))

D1 2018-01-01 2018-12-31 78 90 82.70

D1 2019-01-01 2019-12-31 86 91 87.92

D10 2018-01-01 2018-12-31 66 87 74.15

D10 2019-01-01 2019-12-31 66 73 69.85

C6’ COUNT Project Budget
>= 2000000 GROUPBY
Department YEAR DUR-
ING [2018,2019]

30

C5’

C6’

Did Aggr_Start Aggr_End Min
(MAX(Salary))

Max
(MAX(Salary))

AVGT

(MAX(Salary))

D1 2010-03-16 2010-12-31 3300 20000 13303.44

D1 2011-01-01 2011-12-31 20000 20000 20000.00

D1 2012-01-01 2012-12-31 20000 21600 20935.52

D1 2013-01-01 2013-12-31 21600 21600 21600.00

Did Aggr_Start Aggr_End Min
(COUNT(Pid))

Max
(COUNT(Pid))

AVGT

(COUNT(Pid))

D1 2018-01-01 2018-12-31 78 90 82.70

D1 2019-01-01 2019-12-31 86 91 87.92

D10 2018-01-01 2018-12-31 66 87 74.15

D10 2019-01-01 2019-12-31 66 73 69.85

by n-ary (n>2) non-temporal relationships and utilizes projection to remove du-
plicate data. However, PowerQ does not consider the data duplication caused
by many-to-many, many-to-one relationships and time periods. Since PowerQ is
the latest work supporting aggregate in non-temporal relational keyword search,
our work is built on top of it to handle data duplication caused by more rea-
sons, e.g., many-to-many relationships, many-to-one relationships and the join
between temporal and non-temporal relations.

Except for querying temporal databases via keyword search as this work, a
more commonly used approach is to query the database utilizing extended SQL
query with the support of temporal operators, e.g., temporal join and tempo-
ral aggregate operators [14,13]. These works in this field are mainly focusing
on improving the efficiency of temporal operators, which can be achieved by
specially designed indices [3,13,16,24], time period partition algorithms [6,7] or
parallel computation [5,17]. On the one hand, our framework could take advan-
tage of these works to improve the efficiency of computing the temporal join
sequence as well as temporal aggregate. On the other hand, our framework re-
moves data duplication automatically and correctly, therefore avoids returning
incorrect results of temporal aggregate, while querying with extended SQL re-
quires the users noticing and manually removing the possible data duplicates,
which is error-prone.

6 Conclusion

In this work, we have extended temporal keyword queries with aggregates and
group-by, and described a framework to process these queries over temporal
databases. Our framework addresses the problem of incorrect aggregate results
due to data duplication in the join sequence relation, and meaningless aggregate
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results due to updates. We use a temporal ORM schema graph to capture tem-
poral objects/relationships and temporal attributes, and use these semantics to
identify an unique attribute set required by the aggregate in the join sequence re-
lation. We also support aggregation over user-specified time units and attributes
with inherent time units to return meaningful results.

Limitations of this approach include not considering recursive relationships in
database and the extraction of ORA semantics is not fully automatic. Since one
keyword query may have multiple query interpretations, the future work includes
to design a mechanism to rank these interpretations, and propose algorithms to
share some intermediate relations when computing results for different query
interpretations of the same keyword query.
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