Association Rules Mining for Name Entity Recognition

dc.contributor.authorIndra Budien_US
dc.contributor.authorStephane Bressanen_US
dc.date.accessioned2004-10-21T14:28:52Zen_US
dc.date.accessioned2017-01-23T06:59:40Z
dc.date.available2004-10-21T14:28:52Zen_US
dc.date.available2017-01-23T06:59:40Z
dc.date.issued2003-06-01T00:00:00Zen_US
dc.description.abstractWe propose a new name entity class recognition method based on association rules. We evaluate and compare the performance of our method with the state of the art maximum entropy method. We show that our method consistently yields a higher precision at a competitive level of recall. This result makes our method particularly suitable for tasks whose requirements emphasize the quality rather than the quantity of results.en_US
dc.format.extent315327 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://dl.comp.nus.edu.sg/xmlui/handle/1900.100/1413en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTRA6/03en_US
dc.titleAssociation Rules Mining for Name Entity Recognitionen_US
dc.typeTechnical Reporten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
report.pdf
Size:
307.94 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.52 KB
Format:
Plain Text
Description: