Kolmogorov Numberings and Minimal Identification

dc.contributor.authorFreivalds Rusinsen_US
dc.contributor.authorJain Sanjayen_US
dc.date.accessioned2004-10-21T14:28:52Zen_US
dc.date.accessioned2017-01-23T07:00:48Z
dc.date.available2004-10-21T14:28:52Zen_US
dc.date.available2017-01-23T07:00:48Z
dc.date.issued1994-06-01T00:00:00Zen_US
dc.description.abstractIdentification of programs for computable functions from their graphs by algorithmic devices is a well studied problem in learning theory. Freivalds and Chen consider identification of `minimal' and `nearly minimal' programs for functions from their graphs. To address certain problems in minimal identification for Godel numberings, Freivalds later considered minimal identification in Kolmogorov Numberings. Kolmogorov numberings are in some sense optimal numberings and have some nice properties. We prove certain hierarchy results for minimal identification in every Kolmogorov numbering. In addition we also compare minimal identification in Godel numbering versus minimal identification in Kolmogorov numberings.en_US
dc.format.extent208896 bytesen_US
dc.format.extent58210 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.format.mimetypeapplication/postscripten_US
dc.identifier.urihttps://dl.comp.nus.edu.sg/xmlui/handle/1900.100/1367en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTRC6/94en_US
dc.titleKolmogorov Numberings and Minimal Identificationen_US
dc.typeTechnical Reporten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
report.ps
Size:
56.85 KB
Format:
Postscript Files
Description:
Loading...
Thumbnail Image
Name:
report.pdf
Size:
204 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.52 KB
Format:
Plain Text
Description: