Applications of Kolmogorov Complexity to Computable Model Theory

dc.contributor.authorKHOUSSAINOV, Bakhadyren_US
dc.contributor.authorSEMUKHIN, Pavelen_US
dc.contributor.authorSTEPHAN, Franken_US
dc.date.accessioned2006-09-07T06:46:20Zen_US
dc.date.accessioned2017-01-23T06:59:57Z
dc.date.available2006-09-07T06:46:20Zen_US
dc.date.available2017-01-23T06:59:57Z
dc.date.issued2006-09-07T06:46:20Zen_US
dc.description.abstractIn this paper we answer the following well-known open question in computable model theory. Does there exist a computable not countably categorical saturated structure with a unique computable isomorphism type? Our answer is affirmative and uses a construction based on Kolmogorov complexity. With a variation of this construction, we also provide an example of a uncountably categorical but not countably categorical saturated Sigma-0-1-structure with a unique computable isomorphism type. In addition, using the construction we give an example of an uncountably categorical but not countably categorical theory whose only non-computable model is the prime one.en_US
dc.format.extent463112 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://dl.comp.nus.edu.sg/xmlui/handle/1900.100/2247en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTRA9/06en_US
dc.titleApplications of Kolmogorov Complexity to Computable Model Theoryen_US
dc.typeTechnical Reporten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TRA9-06.pdf
Size:
452.26 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.53 KB
Format:
Plain Text
Description: