An Optimal Bound for Conforming Quality Triangulations

dc.contributor.authorTan Tiow Sengen_US
dc.date.accessioned2004-10-21T14:28:52Zen_US
dc.date.accessioned2017-01-23T07:00:40Z
dc.date.available2004-10-21T14:28:52Zen_US
dc.date.available2017-01-23T07:00:40Z
dc.date.issued1994-03-01T00:00:00Zen_US
dc.description.abstractThis paper shows that for any plane geometric graph <I>G</I> with <I>n</I> vertices, there exists a triangulation <I>T</I> that conforms to <I>G</I>, i.e. each edge of <I>G</I> is the union of some edges of <I>T</I>, where <I>T</I> has O(<I>n^2)</I> vertices with each angle of its triangles measuring no more than <I>(11*pi)/15</I>. Additionally, <I>T</I> can be computed in O(<I>n^2log n)</I> time.en_US
dc.format.extent348141 bytesen_US
dc.format.extent140417 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.format.mimetypeapplication/postscripten_US
dc.identifier.urihttps://dl.comp.nus.edu.sg/xmlui/handle/1900.100/1360en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTRB3/94en_US
dc.titleAn Optimal Bound for Conforming Quality Triangulationsen_US
dc.typeTechnical Reporten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
report.ps
Size:
137.13 KB
Format:
Postscript Files
Description:
Loading...
Thumbnail Image
Name:
report.pdf
Size:
339.98 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.52 KB
Format:
Plain Text
Description: