An Optimal Bound for Conforming Quality Triangulations
dc.contributor.author | Tan Tiow Seng | en_US |
dc.date.accessioned | 2004-10-21T14:28:52Z | en_US |
dc.date.accessioned | 2017-01-23T07:00:40Z | |
dc.date.available | 2004-10-21T14:28:52Z | en_US |
dc.date.available | 2017-01-23T07:00:40Z | |
dc.date.issued | 1994-03-01T00:00:00Z | en_US |
dc.description.abstract | This paper shows that for any plane geometric graph <I>G</I> with <I>n</I> vertices, there exists a triangulation <I>T</I> that conforms to <I>G</I>, i.e. each edge of <I>G</I> is the union of some edges of <I>T</I>, where <I>T</I> has O(<I>n^2)</I> vertices with each angle of its triangles measuring no more than <I>(11*pi)/15</I>. Additionally, <I>T</I> can be computed in O(<I>n^2log n)</I> time. | en_US |
dc.format.extent | 348141 bytes | en_US |
dc.format.extent | 140417 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.format.mimetype | application/postscript | en_US |
dc.identifier.uri | https://dl.comp.nus.edu.sg/xmlui/handle/1900.100/1360 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartofseries | TRB3/94 | en_US |
dc.title | An Optimal Bound for Conforming Quality Triangulations | en_US |
dc.type | Technical Report | en_US |
Files
License bundle
1 - 1 of 1