ERkNN: Efficient Reverse k-Nearest Neighbors Retrieval with Local kNN-Distance Estimation

dc.contributor.authorXIA, Chenyien_US
dc.contributor.authorHSU, Wynneen_US
dc.contributor.authorLEE, Mong Lien_US
dc.date.accessioned2006-07-31T09:01:26Zen_US
dc.date.accessioned2017-01-23T06:59:56Z
dc.date.available2006-07-31T09:01:26Zen_US
dc.date.available2017-01-23T06:59:56Z
dc.date.issued2006-07-31T09:01:26Zen_US
dc.description.abstractThe Reverse k-Nearest Neighbors (RkNN) queries are important in profile-based marketing, information retrieval, decision support and data mining systems. However, they are very expensive and existing algorithms are not scalable to queries in high dimensional spaces or of large values of k. This paper describes an efficient estimation-based RkNN search algorithm (ERkNN) which answers RkNN queries based on local kNN-distance estimation methods. The proposed approach utilizes estimation-based filtering strategy to lower the computation cost of RkNN queries. The results of extensive experiments on both synthetic and real life datasets demonstrate that ERkNN algorithm retrieves RkNN efficiently and is scalable with respect to data dimensionality, k, and data size.en_US
dc.format.extent725757 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://dl.comp.nus.edu.sg/xmlui/handle/1900.100/2244en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTRC7/06en_US
dc.subjectAlgorithmsen_US
dc.subjectPerformanceen_US
dc.subjectDesignen_US
dc.subjectExperimentationen_US
dc.titleERkNN: Efficient Reverse k-Nearest Neighbors Retrieval with Local kNN-Distance Estimationen_US
dc.typeTechnical Reporten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TRC7-06.pdf
Size:
708.75 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.53 KB
Format:
Plain Text
Description: