Discretization of Ordinal Attributes and Feature Selection

dc.contributor.authorHuan Liuen_US
dc.contributor.authorRudy Setionoen_US
dc.date.accessioned2004-10-21T14:28:52Zen_US
dc.date.accessioned2017-01-23T07:00:39Z
dc.date.available2004-10-21T14:28:52Zen_US
dc.date.available2017-01-23T07:00:39Z
dc.date.issued1995-04-01T00:00:00Zen_US
dc.description.abstractThe performance of classification algorithms may deteriorate due to irrelevant attributes. Numeric attributes make the situation worse, since many classification algorithms require that the training data contain only discrete attributes. Discretization can turn numeric attributes into discrete ones. Feature selection can eliminate some irrelevant attributes. This paper describes Chi2, a simple and general algorithm that uses the $\chi^2$ statistic to discretize numeric attributes repeatedly until some inconsistencies are found in the data, and achieves feature selection via discretization. In addition, it can handle mixed attributes and multi-class data naturally. %data, and achieves feature selection and discretization in one go. Experiments are conducted on the real and synthetic data sets. The empirical results demonstrate that Chi2 is effective in feature selection and discretization of numeric and ordinal attributes.en_US
dc.format.extent186160 bytesen_US
dc.format.extent211663 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.format.mimetypeapplication/postscripten_US
dc.identifier.urihttps://dl.comp.nus.edu.sg/xmlui/handle/1900.100/1386en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTRB4/95en_US
dc.titleDiscretization of Ordinal Attributes and Feature Selectionen_US
dc.typeTechnical Reporten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
report.ps
Size:
206.7 KB
Format:
Postscript Files
Description:
Loading...
Thumbnail Image
Name:
report.pdf
Size:
181.8 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.52 KB
Format:
Plain Text
Description: