Absolute Loss Bounds for Prediction using Linear Functions

dc.contributor.authorPhilip M. Longen_US
dc.date.accessioned2004-10-21T14:28:52Zen_US
dc.date.accessioned2017-01-23T07:00:20Z
dc.date.available2004-10-21T14:28:52Zen_US
dc.date.available2017-01-23T07:00:20Z
dc.date.issued1996-07-01T00:00:00Zen_US
dc.description.abstractWe prove new absolute loss bounds for learning linear functions in the standard on-line prediction model. These bounds are on the difference between the sum of absolute prediction errors made by the learning algorithm, and the best sum of absolute prediction errors that can be obtained by fixing a linear function in some class. Known results imply that our bounds on this difference cannot be improved by more than a constant factor.en_US
dc.format.extent149936 bytesen_US
dc.format.extent107509 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.format.mimetypeapplication/postscripten_US
dc.identifier.urihttps://dl.comp.nus.edu.sg/xmlui/handle/1900.100/1345en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTRB7/96en_US
dc.titleAbsolute Loss Bounds for Prediction using Linear Functionsen_US
dc.typeTechnical Reporten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
report.ps
Size:
104.99 KB
Format:
Postscript Files
Description:
Loading...
Thumbnail Image
Name:
report.pdf
Size:
146.42 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.52 KB
Format:
Plain Text
Description: