Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "ZHANG, Minghua"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Mining Progressive Confident Rules
    (2006-06-09) ZHANG, Minghua; HSU, Wynne; LEE, Mong Li
    Many real world objects have states that change overtime. By tracking the state sequences of these objects, we can study their behavior and take preventive measures before they reach some undesirable states. In this paper, we propose a new kind of pattern, called progressive confident rules, to describe sequences of states with an increasing confidence that lead to a particular end state. We give a formal definition of progressive confident rules and their concise set. We propose new pruning strategies and employ the concise set analysis of rules in the mining process to reduce the enormous search space. Experiment result shows that the proposed algorithmis efficient and scalable. We also demonstrate the application of progressive confident rules in classification.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback