Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "YU, Ge"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Efficient and Effective Similarity Search over Probabilistic Data based on Earth Mover's Distance
    (2010-05-03) XU, Jia; ZHANG, Zhenjie; TUNG, Anthony K.H.; YU, Ge
    Probabilistic data is coming as a new deluge along with the technical advances on geographical tracking, multimedia processing, sensor network and RFID. While similarity search is an important functionality supporting the manipulation of probabilistic data, it raises new challenges to traditional relational database. The problem stems from the limited e®ectiveness of the distance metric supported by the existing database system. On the other hand, some complicated distance operators have been proved their values for better distinguishing ability in probabilistic domain. In this paper, we discuss the similarity search problem with the Earth Mover's Distance, which is the most successful distance metric on probabilistic histograms and an expensive operator with cubic complexity. We present a new database approach to answer range queries and k-nearest neighbor queries on probabilistic data, on the basis of Earth Mover's Distance. Our solution utilizes the primal-dual theory in linear programming and deploys B+ tree index structures for e®ective candidate pruning. Extensive experiments show that our proposal dramatically improves the scalability of probabilistic databases.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback