Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "GIBBONS, Philip B."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The Cost of Fault Tolerance in Multi-Party Communication Complexity
    (2012-05-17) CHEN, Binbin; YU, Haifeng; ZHAO, Yuda; GIBBONS, Philip B.
    Multi-party communication complexity involves distributed computation of a function over inputs held by multiple distributed players. A key focus of distributed computing research, since the very beginning, has been to tolerate crash failures. It is thus natural to ask “If we want to compute a certain function in a fault-tolerant way, what will the communication complexity be?” This natural question, interestingly, has not been formally posed and thoroughly studied prior to this work. Whether fault-tolerant communication complexity is interesting to study largely depends on how big a difference failures make. This paper proves that the impact of failures is significant, at least for the SUM aggregation function in general networks: As our central contribution, we prove that there exists (at least) an exponential gap between the non-fault-tolerant and fault-tolerant communication complexity of SUM. Our results also imply the optimality (within polylog factors) of some recent fault-tolerant protocols for computing SUM via duplicate-insensitive techniques, thereby answering an open question as well. Part of our results are obtained via a novel reduction from a new two-party problem UNIONSIZECP that we introduce. UNIONSIZECP comes with a novel cycle promise, which is the key enabler of our reduction. We further prove that this cycle promise and UNIONSIZECP likely play a fundamental role in reasoning about fault-tolerant communication complexity.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback