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Abstract. Unrestricted availability of the datasets is important for the
researchers to evaluate their strategies to solve the research problems.
While publicly releasing the datasets, it is equally important to protect
the privacy of the respective data owners. Synthetic datasets that pre-
serve the utility while protecting the privacy of the data owners stands
as a midway.
There are two ways to synthetically generate the data. Firstly, one can
generate a fully synthetic dataset by subsampling it from a synthetically
generated population. This technique is known as fully synthetic dataset
generation. Secondly, one can generate a partially synthetic dataset by
synthesizing the values of sensitive attributes. This technique is known as
partially synthetic dataset generation. The datasets generated by these
two techniques vary in their utilities as well as in their risks of disclosure.
We perform a comparative study of these techniques with the use of dif-
ferent dataset synthesisers such as linear regression, decision tree, ran-
dom forest and neural network. We evaluate the effectiveness of these
techniques towards the amounts of utility that they preserve and the
risks of disclosure that they suffer.

Keywords: synthetic data, random forest, decision tree, risk of disclo-
sure, privacy

1 Introduction

On one hand, the philosophy of open data dictates that if the valuable datasets
are made publicly available, the problems can be crowdsourced in the expecta-
tion to obtain the best possible solution. On the other hand, business organi-
zations have their concerns regarding the public release of the datasets which
may lead to the breach of private and sensitive information of stakeholders. In
order to mitigate the risk of confidentiality breach, agencies employ different
techniques such as reordering or recoding of sensitive variables, shuffling values
among different records. In spite of these efforts by agencies, we have examples
of confidentiality breaches in anonymised datasets. For instance, identification
of the medical records of Massachusetts governor in an anonymised dataset [19],
privacy breach at Netflix one million dollar challenge that led to litigations [10].

Analysts and researchers use datasets to validate their hypotheses. In order
to have faithful analyses, publicly released datasets need to retain the utility



from the original dataset. By utility, we expect retention of the relationships
among different attributes as well as retention of the distribution of values for
each attribute. In order to achieve privacy, noise introduced by the privacy-
preserving mechanisms deteriorates the utility of the dataset. Therefore, if one
keeps privacy of the dataset as the sole objective, utility of the datasets is highly
compromised. Therefore, there is a need of a way to generate datasets that can be
made publicly available with minimum risk of disclosure and maximum utility.

Fully synthetic datasets proposed by Rubin [17] and partially synthetic datasets
proposed by Little [8] bridge the gap between privacy and utility. They use multi-
ple imputation, a technique used for repopulating the missing values in a dataset,
to generate synthetic records which preserve relationships in the population. Fol-
lowing up on these works of multiple imputation, Reiter et al. [1, 6, 13, 15] use
different machine learning tools to generate synthetic datasets. These works treat
values of synthetically generated attributes as missing values that are generated
using models such as Decision Trees, Random Forest, Support Vector Machine,
etc.

We comparatively evaluate synthetic dataset generation techniques using dif-
ferent dataset synthesisers: namely Linear Regression, Decision Tree, Random
Forest and Neural Network. We evaluate their effectiveness in terms of utility
retention and risk of disclosure. We evaluate their efficiency in terms of time re-
quired to generate synthetic datasets. Given the tradeoff between the efficiency
and effectiveness, we observe that Decision Trees are not only efficient but also
competitively effective compared to other dataset synthesisers.

In Section 2, we present the related work. Section 3 introduces the formalism
of synthetic dataset generation using multiple imputation. We present different
dataset synthesisers in Section 4 followed by experiments and evaluation in Sec-
tion 5. Section 6 concludes the work by discussing the insights and the extensions
to the existing work.

2 Related Work

Synthetic dataset generation work stems from the early works of data imputa-
tion to fill in the missing values in the surveys [16]. In [17], Rubin proposes a
procedure to generate fully synthetic dataset that uses multiple imputation tech-
nique to synthetically generates values for a set of attributes for all datapoints in
the dataset. Although it is advantageous to synthetically generate values for all
datapoints, it is not always a necessity. Partially synthetic datasets, proposed by
Little [8], are generated by synthetically generating the values of the attributes
that are sensitive to public disclosure. Various dataset synthesisers such as de-
cision tree [15], random forest [1], support vector machine [2] have been used
to generate fully and partially synthetic datasets. Drechsler et al. [6] have per-
formed an empirical comparative study between different dataset synthesisers.
Comparison between fully and partially synthetic datasets can be found in [4].
Recently, Nowok et al. [11] have created an R package, synthpop, which pro-



vides basic functionalities to generate synthetic datasets and perform statistical
evaluation.

The effectiveness of the synthetic dataset lies in the amount of utility it
retains from the original dataset. Most of the works [1, 6, 13, 15] use statistical
methods of estimation for the evaluation of utility. They use estimators of mean
and variance to calculate confidence intervals. Regression analyses are used to
test whether the relationships among different variables are preserved. Aside
from these analysis specific measures, Woo et al. [20] and Karr et al. [7] have
proposed global measures such as Kullback-Leibler (KL) divergence, extension
of propensity score, cluster analysis measure.

One of the prime motivations behind publicly releasing synthetic dataset in-
stead of original datasets is to maintain the privacy of the data owners. In [14],
Reiter introduces formalism to calculate risk of disclosure in synthetically gen-
erated datasets using multiple imputation. The same formalism has been used
in [6, 15] to evaluate the risk of disclosure. For further details, readers are re-
quested to refer to [3].

In this work, we comparatively evaluate efficiency and effectiveness of fully
and partially synthetic dataset generation techniques using different dataset syn-
thesisers including neural networks.

3 Synthetic dataset Generation using Multiple
Imputation

In this section, we describe the general procedure of synthetic dataset genera-
tion using multiple imputation. Firstly, we introduce the terminology used for
multiple imputation which is further used to explain full and partial synthetic
dataset generation.

3.1 Multiple Imputation

We follow the formalism proposed by Drechsler [4] to explain the idea of multiple
imputation.

Consider a dataset of size n sampled from a population of size N . Let Ynobs
denote subset of attributes in the dataset whose values are either missing for
some datapoints or sensitive towards the public disclosure. Rubin [16] proposes
to synthetically generate values for Ynobs given the knowledge of rest of the
attributes in the dataset, say Yobs.

Let, M be a dataset synthesiser that generates values for an attribute Yi
given the information about rest of the attributes, denoted as Y−i. With the
help of M, an imputer independently synthesises values of Ynobs m times and
releases m synthetic datasets D = {D1,D2, ...,Dm}. Each dataset Dl comprises
of datapoints with the values for the attributes in Yobs same as the original
dataset and datapoints with synthetically generated values for variables in Ynobs.

In order to synthesise multiple sensitive attributes, we follow the procedure
presented in [2]. Suppose that we want to synthetically generate values all of



the attributes except an attribute Y0. The procedure to synthetically generate
values of multiple attributes is as follows:

1. Generate values for Y1 using known Y0. Let, Y
(syn)
1 denote synthetically

generated values for Y1.
2. Generate values for Y2 using Y0 and Y1. (Y0, Y1) is used to train the model

M whereas (Y0, Y
(syn)
1 ) is used to generate Y

(syn)
2 .

3. Generate values for Yi for i = 3, 4, ... using (Y0, Y1, ..., Yi−1).

This procedure is repeated m times to generate m synthetic datasets.
Suppose that we want to statistically estimate of an attribute Q. Let, ql

and vl denote sample mean and sample variance of Q using the dataset Dl.
Let, q̄m, bm and v̄m denote mean of the sample means, “between imputation
variance” and “within imputation variance” over m datasets respectively. They
are calculated as defined in Equation 1.

q̄m =
1

m

m∑
l=1

ql

bm =
1

m− 1

m∑
l=1

(ql − q̄m)2

v̄m =
1

m

m∑
l=1

vl

(1)

The reason behind releasing m different datasets and combining estimators
on each dataset is two folds. Firstly, there is randomness in the dataset due to
sampling from the population. Secondly, there is randomness in the dataset due
to imputed values. In order two capture these variabilities, framework of multiple
imputation proposes the release of m datasets.

3.2 Fully Synthetic Dataset Generation

We follow the formalism proposed by Rubin [17] to generate fully synthetic
datasets.

Consider a dataset of size n sampled from a population of size N . Suppose
that an imputer knows the values of a set of variables X for the entire population
and values for rest of the variables, Y , only for a selected small sample. Let, Yinc
and Yexc denote values of variables which are included in the sample and excluded
from the sample respectively. The imputer synthetically generates values of Yexc
using a dataset synthesizerM trained on Yinc and X. This synthesis is equivalent
to performing multiple imputation with Yexc as Ynobs and Yinc as Yobs. Publicly
released datasets, D, comprise of m samples selected synthetically generated
population.

Suppose that we want to statistically estimate of an attribute Q. We use
estimator of the mean and estimator of the variance presented in [13]. The sample
mean, q̄m, is the estimator of the mean. For smaller values of m(< 30), the



estimator of variance of Q, Tf , follows Student’s t-distribution with νf degrees
of freedom. The estimator is calculated using Equation 2.

Tf =
b(m+ 1)

m
− v̄m

νf = (m− 1) ∗ (1− r−1)2

r =
bm(1 +m−1)

vm

(2)

Theoretically, fully synthetic datasets provides 100% guarantee against the
disclosure of value of sensitive attribute [17]. Since n << N , it is less probable to
have record from the original sample in the final dataset. Final datasets are sam-
pled from synthetic population datasets in which N−n records are synthetically
generated.

3.3 Partially Synthetic Dataset Generation

We follow the formalism proposed by Reiter [13] to generate partially synthetic
datasets.

Let S be a dataset of size n sampled from a population of size N . In order
to protect the sensitive information, an imputer decides to alter values of a set
of attributes, Y , for a subset of datapoints in S. Let Z be a binary vector of
size n. Zi takes value one if Y values of the ith datapoint are to be synthetically
generated and Zi takes value zero if values of Y attributes are not be altered.

Let Ysyn = {Yi|∀i, Zi = 1} and Yorg = {Yi|∀iZi = 0}. We generate m
partially synthetic datasets by multiple imputation. In this case, Ysyn are the
datapoints, with missing values, that we synthetically generate by training a
dataset synthesiser on the available data, i.e Yorg. This synthesis is equivalent
to performing multiple imputation with Ysyn as Ynobs and Yorg as Yobs. Pub-
licly released datasets, D, comprise of m datasets sampled from the population
wherein values of attributes in Y are synthetically generated, as specified by Z,
for each of the dataset.

Suppose that we want to statistically estimate of an attribute Q. We use
estimator of the mean and estimator of the variance presented in [12]. The sample
mean, q̄m, is the estimator of the mean. For smaller values of m(< 30), the
estimator of variance of Q, Tp, follows Student’s t-distribution with νf degrees
of freedom. The estimator is calculated using Equation 3.

Tp = v̄m +
b

m

νp = (m− 1) ∗
(

1 +
¯mvm
b

)2 (3)

4 Dataset synthesisers

As described in Section 3, method of multiple imputation generates values for an
attribute Yi by using a dataset synthesiserM trained on the information about



rest of attributes Y−i. In this section, we discuss different dataset synthesisers
namely Linear Regression, Decision Tree, Random Forest and Neural Network.

4.1 Linear Regression

Linear regression [9] models relationships between a dependent attribute and one
or more independent attributes. Linear regression models datapoints as samples
from a Gaussian distribution, as specified in Equation 4, where β are the pa-
rameters that we learn using the training data. Please refer to [9] for detailed
derivation.

P (Yi|Y−i) = N (Yi|βTY−i, σ
2) (4)

In order to generate synthetic data, for every dataset and for every attribute Yi
to be synthetically generated, we learn the parameters of the regression model
using the dataset with attributes in Y−i. We generate values by sampling from
Gaussian distribution as given in Equation 4.

4.2 Decision Tree

Decision tree or Classification and Regression Tree (CART) models [9] are pre-
dictive models which work by recursively splitting the feature space, the space
spanned by the values attributes in the dataset, into smaller spaces. In the be-
ginning, all of the training examples belong to one feature space. CART chooses
an attribute value on which the dataset can be split using metrics such as Gini
index or information gain. Partitioning is repeated on every smaller feature sub-
space until there are no more than k datpoints left in the subspace. This process
is represented using a tree structure wherein each node defines a conditional
distribution of its members given the criteria that defines the partition.

We adopt Reiter [15] who proposes the use of CART to generate partially
synthetic datasets. The procedure starts with building a decision tree using the
values of the attributes that are available in the dataset Y−i. In order to synthe-
sise the value of an attribute Yi for a datapoint j, we trace down the tree using
the known attributes of j until we reach the leaf node. Let Lj be the set of values
of Yi in the leaf node. For a categorical attribute Yi, Reiter proposes Bayesian
bootstrap sampling to choose m different values. For a continuous attribute Yi,
we fit a kernel density estimator over the values in Lj and sample m values from
the estimate.

4.3 Random Forest

Random forest is a kind of Ensemble learning technique. It uses multiple decision
trees that are constructed on the samples of the training dataset and the final
output is given by aggregating the result from individual tree. Each decision tree
is constructed on a datapoints using a set of randomly selected attributes.

Caiola et al. [1] use random forest to generate partially synthetic datasets.
In order to synthesise values for a certain attribute Yi, they train a fixed num-
ber decision trees on random samples of training dataset Y−i. For a categorical



attribute, the collection of results from constituent decision tree forms a multi-
nomial distribution. m values are sampled from this distribution as the synthetic
values for Yi. For a continuous attribute, they propose use of a kernel density
estimator over the results from decision trees and sample values from the esti-
mator.

4.4 Neural Network

Neural network [9] is a machine learning model that learns an abstract function
mapping an input to the corresponding output. Schematically, it consists of three
layers namely an input layer, one or more hidden layers and an output layer.
Each layer comprises of neurons wherein every neuron acts a signal emitter.
Every neuron receives input from the previous layer and emits a single output
that is weighted sum of inputs with an additive bias. These interconnection builds
a network of neurons. The weights and biases for every neuron are learned using
backpropagation algorithm. Details of the algorithm can be found in [9].

For K-class classification, there are K nodes in the output layer, with value
at k-th neuron representing the probability of class k. We train a neural network
using features in Y−i. In order to synthesise value of an attribute Yi, we sample
a class value using the output layer neuron values as a multinomial distribution.

5 Empirical Evaluation

5.1 Dataset and Experimental Setup

We conduct experiments on a microdata sample of US Census in 2000 provided
by IPUMS International [18]. The dataset consists of 1% sample of the original
census data. It spans over 1.23 million households with records of 2.8 million
people. It has several attributes of which not every single attribute is reported
by all of the people. In order to avoid these discrepancies in the data, we follow
the approach presented in [6] to consider the records of the heads of households.
We treat this collection of the records of 316,276 households as the population.
Table 1 shows the set of features which we consider for experiments.

All programs are run on Linux machine with quad core 2.40GHz Intel R© Core
i7TMprocessor with 8GB memory. The machine is equipped with two Nvidia
GTX 1080 GPUs. Python R© 2.7.6 is used as the scripting language.

5.2 Evaluation of utility

The utility of generated dataset needs to be evaluated at two different levels.
Firstly, we need to evaluate differences between the distribution of values of
original attribute and synthetically generated attributes. Secondly, we need to
evaluate the difference between the quality of statistical estimation of a certain
attribute for synthetic dataset and generated data.

Let y ∈ Y be any attribute that we synthetically generate from an original
dataset. We calculate the similarity between the overall distribution of values



Attribute Name Variable Type Notes

House Type Categorical
Family Size Ordinal
Sex Categorical
Age Ordinal 5.9% have age less than 26
Marital Status Categorical
Race Categorical
Educational Status Categorical
Employment Status Categorical
Income Ordinal 7.13% have income more than 70000
Birth Place Categorical

Table 1. Dataset Description

of y by calculating normalised KL-divergence between the distribution of
values of y in population and the distribution of synthetically generated values.
For m synthetic datasets, we consider mean of the normalised KL-divergence
over individual datasets. Closer the value to 1, more similar the synthetically
generated values are to the original values.

Karr et al. [7] develop a mechanism based on overlap between confidence
intervals to evaluate the effectiveness of a statistical estimator. We estimate mean
and variance of y using the point estimators described Section 3. We construct a
95% confidence interval around the estimator. Let (Ls, Us) be confidence interval
for synthetically generate y and (Lo, Uo) be interval from original data. We
compute intersection of these intervals denoted as (Li, Ui). The overlap utility
measure is calculated using Equation 5.

I =
(Ui − Li)

2(Uo − Lo)
+

(Ui − Li)

2(Us − Ls)
(5)

If the intervals are similar to each other, we say that the synthetic dataset
generation procedure preserves the utility. The value of I is close to one if the
utility is preserved and I = 0 refers to the dissimilar confidence intervals.

5.3 Evaluation of risk of disclosure

We follow Reiter [5, 13] to estimate the risk of disclosure in the synthetically
generated dataset. Let t be a vector of information possessed by an intruder. We
assume that the intruder has complete information about an auxiliary variable,
say region of birth, which is not a sensitive variable. For instance, the intruder
might be interested in an individual who is born in Nevada earning more than
70, 000$ salary. For every datapoint j in the dataset, the intruder calculates the
probability of the datapoint j being the record of interest by comparing the
respective attributes as given in Equation 6. In Equation 6, N(t,i) denotes the
number of records in dataset Di that match target. I(Y i

j = t) is the identity

function that equals to 1 if jth datapoint in the dataset Di matches t otherwise
0.



Pr(J = j|D, t) =
1

m

m∑
i=1

1

N(t,i)
I(Y i

j = t) (6)

In the end, the intruder selects datapoints with maximum probability value.
This process is repeated for every target datapoint in t. For a datapoint j ∈
t, an intruder may find multiple datapoints with the same value of maximum
probability. Let, R denotes the set of datapoints in t for which only one datapoint
in the dataset is matched with highest probability. Set R can be decomposed
into two mutually exhaustive sets T and F that denote the set of datapoints
with true matches and false matches respectively. In order to evaluate the risk of
disclosure, we calculate true match rate and false match rate. They are calculated
using Equation 7. The smaller the true match rate, better is the performance of
a dataset synthesiser.

true match rate =
|T |
|t|

false match rate =
|F |
|R|

(7)

For further details about the calculation please refer to [5, 13].

5.4 Evaluation

The process starts by drawing 1% sample from the population, which we treat as
the original dataset. We synthetically generate values for two attributes: income
and age, in the same order. Interested readers can refer to [15] for a detailed
discussion on choosing the order of synthesis. We generate 5 synthetic datasets
for each original dataset. We repeat this procedure for 500 original datasets and
mean of various metrics over 500 iterations is reported.

In order to generate partially synthetic datasets, we need to define the cutoffs
for the values of attribute that determine quantify the sensitivity of the attribute
towards disclosure. We consider datapoints that have more than 70000$ income
value and less than 26 age value to be the ones with sensitive information. So,
we synthetically generate values for age and income for the datapoints that fit
these criteria. Utility evaluation results are presented in Table 2. In order to
generate fully synthetic datasets, we generate values of age and income for all
the records in the original dataset. Utility evaluation results are presented in
Table 3. We observe that although two techniques show comparable values of
synthetic means, the technique of partially synthetic dataset generation shows
greater extent of the overlap with attribute distribution in the original dataset.
Partially synthetic dataset generation does not replace all values of the attributes
in the sample. Released datasets contains datapoints from the original dataset.
Therefore, we observe higher overlap for partially synthetic datasets. In Table 2
and Table 3, we observe a large deviation in the sample mean of age from its
original mean in case of linear regression. Linear regression learns parameters



such that squared loss on the training dataset is minimised and without any reg-
ularization it suffers from overfitting. As specified in Section 3, linear regression
model is fit on the synthetically generated values of income while synthesising
value for age. Linear regression fails to capture exact distribution of values in
the original dataset. Thus, linear regression suffers from the order of in which
attributes are synthesised. Decision tree and other models are not prone to over-
fitting the training dataset. Therefore, we do not observe such a degradation in
utility.

Feature
Data

synthesisers
Original Sample

Mean
Partially Synthetic Data

Synthetic Mean Overlap Norm KL Div.

Income

Linear Regression 27112.61 27117.99 0.98 0.54
Decision Tree 27143.93 27131.14 0.94 0.53

Random Forest 27107.04 27254.38 0.95 0.58
Neural Network 27069.95 27370.99 0.81 0.54

Age

Linear Regression 49.83 24.69 0.50 0.55
Decision Tree 49.83 49.83 0.90 0.56

Random Forest 49.82 49.74 0.95 0.56
Neural Network 49.87 49.78 0.90 0.56

Table 2. Evaluation of utility for partially synthetic datasets generated using different
dataset synthesisers.

Feature
Data

synthesisers
Original Sample

Mean
Fully Synthetic Data

Synthetic Mean Overlap Norm KL Div.

Income

Linear Regression 27112.61 27074.80 0.52 0.55
Decision Tree 27081.45 27091.02 0.55 0.58

Random Forest 27107.04 28720.93 0.54 0.64
Neural Network 27185.26 26694.54 0.54 0.94

Age

Linear Regression 49.83 -192.21 0.50 0.56
Decision Tree 49.83 49.83 0.56 0.56

Random Forest 49.82 46.25 0.68 0.57
Neural Network 49.76 54.32 0.75 0.99

Table 3. Evaluation of utility for fully synthetic datasets generate using different
dataset synthesisers.

In order to evaluate the risk of disclosure, we require a scenario. We select the
scenario by doing some exploratory analysis on the population. The datapoints
that sparsely occur in the population, for instance people who are born in middle
east with a certain income threshold, equally sparsely occur in a small sample.
In order to statistically evaluate risk of disclosure, we need to have at least a
handful of targets for evaluation.



Taking into account these requirements, we suppose that an intruder is in-
terested in people who are born in US and have income more than 250, 000$.
All these people are the targets of the intruder. Intruder tries to match every
single target with the records in the released datasets. We consider two records
perfectly match if the people representing the records are born in US, they have
income more than 250, 000$ and the age of the person in dataset in within the
tolerance of 2 compared to target person.

Two cases arise in the evaluation. For a given target, the intruder may or
may not know if the target person is included in the released sample. If the
target person is not included, matching probability is calculated in a different
way. In such a case, instead of using N(t,i) in Equation 6, we use the number
of datapoints in population that match with target t. Results are presented in
Table 4. We observe that, in the case when the intruder does not have certainty
about inclusion of target in the sample, risk of disclosure is the least. In most of
the cases, the targets might not be present in the released sample which leads
to true match rate of 0. Observing the results for the case when a target is
present in the sample, we see that neural networks are comparatively giving
better performance than rest of the dataset synthesisers.

Dataset synthesisers
Target is in the sample Target may be in the sample
True MR False MR True MR False MR

Linear Regression 0.06 0.82 0.00 0.00

Decision Tree 0.18 0.68 0.00 0.99

Random Forest 0.35 0.50 0.00 0.99

Neural Network 0.03 0.92 0.00 0.99
Table 4. Evaluation of risk of disclosure for different dataset synthesisers

We comparatively analyse efficiency of both these techniques using different
dataset synthesisers. The running time, in seconds, for generating 5 synthetic
datasets is reported in Table 5. We observe that the neural networks achieve the
low risk of disclosure at the cost of a higher running time than the time taken
by linear regression or decision trees.

dataset synthesiser
Partially Synthetic
Dataset Generation

Fully Synthetic
Dataset Generation

Linear Regression 0.040 0.068

Decision Tree 0.048 0.533

Random Forest 3.350 103.543

Neural Network 0.510 55.26
Table 5. Efficiency: Each cell shows the running time required, in seconds, to generate
5 synthetic datasets.



6 Discussion and Future Works

In this work, we comparatively evaluate fully and partially synthetic dataset gen-
eration techniques using different dataset synthesisers, namely linear regression,
decision tree, random forest and neural network. We analyse the effectiveness
using the overlap of generated values of attributes, such as estimators of mean
and variance, with values of those attributes from original data. We also evalu-
ate the distribution level similarity that captures the dataset statistics at global
level. We address privacy concerns by calculating the risk of disclosure for syn-
thetically generated datasets. The analysis shows that decision trees stand as
a good dataset synthesiser given its high effectiveness compared to other data
synthesisers. This observation agrees with the result in [6].

We use a well-structured dataset in this work. Many real-world datasets do
not have a well defined structure. For instance, the social network datasets or
the datasets generated from the readings collected by sensors. As a future work,
we want to explore how synthetic dataset generation techniques can be adopted
for such non-structured or semi-structured datasets.
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