
T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l of C o m p u t i n g
Computing 1, 13 Computing Drive, Singapore 117417

TRA7/15

Answering Keyword Queries involving Aggregates and
Group-Bys in Relational Databases

Zhong Zeng, Mong Li Lee and Tok Wang Ling

July 2015

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or tutorial
article, which has been submitted for publication in a journal or for
consideration by the commissioning organization. The report represents the
ideas of its author, and should not be taken as the official views of the School
or the University. Any discussion of the content of the report should be sent to
the author, at the address shown on the cover.

David ROSENBLUM
Dean of School

Answering Keyword Queries involving Aggregates and
Group-Bys in Relational Databases

Zhong Zeng
National University of

Singapore
zengzh@comp.nus.edu.sg

Mong Li Lee
National University of

Singapore
leeml@comp.nus.edu.sg

Tok Wang Ling
National University of

Singapore
lingtw@comp.nus.edu.sg

ABSTRACT
Keyword search over relational databases has gained pop-
ularity as it provides a user-friendly way to explore struc-
tured data. Current research has focused on the computa-
tion of minimal units that contain all the query keywords,
and largely ignores queries to retrieve statistical informa-
tion from the database. The latter involves aggregate func-
tions and group-bys, and are called aggregate queries. In
this work, we propose a semantic approach to answer key-
word queries containing aggregates and group-bys. Our ap-
proach utilizes the ORM schema graph to capture the se-
mantics of objects and relationships in the database, and
determines the various interpretations of a query. Based on
each interpretation, we generate an SQL statement to apply
aggregates and group-bys. Further, we detect duplications
of objects and relationships arising from denormalized rela-
tions so that the aggregate functions will not compute the
statistics for the same information repeatedly. Experimen-
tal results demonstrate that our approach is able to return
correct answers to aggregate queries.

1. INTRODUCTION
As databases increases in size and complexity, the abil-

ity for users to issue structured queries in SQL has become
a challenge. Keyword search over relational databases has
gained traction as it enables users to query the database
without knowing the database schema or having to write
complicated SQL queries [7, 11, 8, 10, 1, 2]. Research on
relational keyword search has focused on the efficient com-
putation of the minimal set of tuples that contain all the
query keywords [9, 6, 5, 4], and strategies to retrieve rel-
evant answers to the query [6, 11, 14, 3]. However, these
works do not handle aggregate queries.

Aggregate queries is a powerful mechanism that provides
users with a summary of the data and statistical informa-
tion. The work in [13] proposes a prototype system called
SQAK that allows aggregate queries to be expressed using
simple keywords. A keyword query in SQAK comprises of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

a set of terms, and at least one of the terms is an aggregate
function such as count, number, sum, min, or max. The
terms in the query may match the names of relations or
attributes or tuple values.

Consider the sample university database in Figure 1. Sup-
pose we want to know the total credits obtained by the stu-
dent Green, we can issue the keyword query Q1 = {Green
SUM Credit}, where the term SUM indicates the aggregate
function SUM on the course credits.

Course

Code Title Credit

c1 Java 5.0

c2 Database 4.0

c3 Multimedia 3.0

Lecturer

Lid Lname Did

l1 Steven d1

l2 George d1

Enrol

Sid Code Grade

s1 c1 A

s1 c2 B

s1 c3 B

s2 c1 A

s3 c1 A

s3 c3 B

Teach

Code Lid Bid

c1 l1 b1

c1 l1 b2

c1 l2 b1

c2 l1 b2

c2 l1 b3

c3 l2 b4

Textbook

Bid Tname Price

b1 Programming Language 10

b2 Discrete Mathematics 15

b3 Database Management 12

b4 Multimedia Technologies 20

Department

Did Dname Fid

d1 CS f1

Faculty

Fid Fname

f1 Engineering

Student

Sid Sname Age

s1 George 22

s2 Green 24

s3 Green 21

Figure 1: Example university database

In order to answer these queries, SQAK [13] models the
database schema as a schema graph where each node repre-
sents a relation and each edge represents a foreign key-key
constraint. Then SQAK identifies the matches of each term
in a query. A relation is matched if a term matches its
name, or the name of one of its attributes, or the value of
some of its tuples. A set of minimal connected subgraphs
of the schema graph that contain the matched relations are
generated. These subgraphs are translated into SQL state-
ments to retrieve answers from the database. Note that an
aggregate function(s) is applied to the attribute that follows
the aggregate term in the query. For example, SQAK will
generate the SQL statement: SELECT SUM(Credit) FROM
Student WHERE Sname=‘Green’ GROUP BY Sname for the
query Q1={Green SUM Credit}.

We observe that incorrect answers may be returned by
SQAK when a term in the query matches multiples tuples
in a relation. We see that the term Green in Q1 matches the
names of two students s2 and s3 in Figure 1. This naturally
implies that we should find the sum of the credits obtained
by each of these students, that is, the total credits for s2 is
5 while the total credits for s3 is 8. However, SQAK does
not distinguish between these two “different” name matches,
and outputs a total credits of 13 for students called Green.

Similarly, SQAK may return incorrect answers when a
query matches a relation that has more than 2 foreign keys.
For instance, the Teach relation in Figure 1 contains 3 for-
eign keys that reference the Course, Lecturer and Textbook
relations respectively. If we have a query Q2 = {Java SUM
Price}, the term Java matches a course title while the term
Price matches an attribute of the Textbook relation. This
implies that we should return the total price of the textbooks
that are used in the Java course. Based on the Teach rela-
tion, there are 2 such textbooks b1 and b2 whose total price
is 25. But SQAK will generate the following SQL statement:
SELECT SUM(Price) FROM Course C, Teach T, Textbook B

WHERE C.Title=‘Java’ AND T.Code=C.Code AND T.Bid=B.Bid

GROUP BY C.Title

which returns 35 for total price because textbook b1 appears
2 times for the Java course (i.e., c1) in the Teach relation.

Finally, many applications that capture historical data
and provide exploratory and in-depth data analysis often de-
normalize their databases to improve runtime performance.
This denormalization affects the database schema graph with
data duplication. As SQAK does not consider denormalized
relations in the database, it may return incorrect answers
for queries involving aggregate functions.

Figure 2 shows a denormalized university database where
the Lecturer relation now has a foreign key that references
the Faculty relation. Consider the query Q3={Engineering
COUNT Department}, where the term Engineering matches a
faculty name while the term Department matches the name
of the Department relation. SQAK will find the number of
departments in Engineering faculty by joining the Department,
Lecturer and Faculty relations, and outputs the incorrect
answer 2. This is because the values of attributes Did and
Fid in the Lecturer relation are duplicated.

Department

Did Dname

d1 CS

Faculty

Fid Fname

f1 Engineering

Lecturer

Lid Lname Did Fid

l1 Steven d1 f1

l2 George d1 f1

Figure 2: A denormalized university database

In this paper, we present a generic solution to answer
keyword queries involving aggregates and group-bys in rela-
tional database keyword search. This requires us to address
two challenges. First, keyword queries are inherently am-
biguous and thus can have multiple interpretations. Thus,
we need to identify the various interpretations and apply
aggregate functions on the appropriate attributes. Second,
we need a mechanism to detect duplications arising from
denormalized relations so that the aggregate functions will
not repeatedly compute statistics for the same information.
We utilize the extended keyword query language and the
Object-Relationship-Mixed (ORM) semantics introduced in
[15] to identify the context of keywords and interpret the
queries. This enables us to process aggregates in keyword
queries correctly.

The contributions of our work are summarized as follows:

1. We identify the limitations of the previous work SQAK,
as it does not consider the semantics of objects and re-
lationships in the database.

2. We design the syntax for aggregate queries in relational
database keyword search, and propose a semantic ap-
proach to process these queries.

3. We detect the duplications of objects and relationships
arising from denormalized relations, and extend our
approach to handle aggregate queries on denormalized
databases.

4. We conduct extensive experiments to demonstrate the
effectiveness of our approach in retrieving statistical
information for users.

2. PRELIMINARIES
The work in [15] extends the keyword query language to

include the keywords that match meta-data, i.e., the names
of relations and attributes. These keywords provide the con-
text of the subsequent keywords in the query and thus reduce
the ambiguity of the query. Consider the query {Lecturer
George} on the database in Figure 1. The keyword George
can refer to a student name or a lecturer name. However,
since the keyword Lecturer matches the name of the relation
Lecturer and provides the context of the keyword George,
indicating that the user is more likely to be interested in
the lecturer named George rather than a student. Here, we
further extend the query language to incorporate aggregates.

Definition 1. A keyword query Q is a sequence of terms
{t1 t2 · · · tn} where each term ti either matches a relation
name, an attribute name, a tuple value, GROUPBY or an
aggregate function MIN , MAX, AV G, SUM or COUNT .

In order to properly interpret a keyword query involving
aggregate function and GROUPBY, we impose the following
constraints on the terms in the query:

1. The last term tn cannot match an aggregate function
or GROUPBY.

2. For each term ti, i < n that matches the aggregate
function MIN , MAX, AV G or SUM , the next term
ti+1 should match an attribute name.

3. For each term ti, i < n that matches COUNT or
GROUPBY, the next term ti+1 should match either a
relation name or an attribute name.

An example query that satisfies the last constraint is {COUNT
Student GROUPBY Course}, and we generate an SQL state-
ment to find the number of students in each course:

SELECT COUNT(S.Sid) As numSid

FROM Student S, Enrol E, Course C

WHERE S.Sid=E.Sid AND E.Code=C.Code

GROUPBY C.Code

Note that the terms Student and Course which match rela-
tion names are mapped to the primary key of these relations,
namely Sid and Code respectively.

2.1 Query Patterns
A keyword query is inherently ambiguous as each keyword

in the query can have multiple matches. [15] introduces the
notion of query patterns to depict the various interpretations
of a keyword query. These query patterns are generated from
the Object-Relationship-Mixed (ORM) schema graph of the
relational database.

The ORM schema graph is an undirected graph that cap-
tures the semantics of objects/relationships in the database.
Each node in the ORM schema graph comprises of an ob-
ject/relationship/mixed relation and its component relations,

and is associated with a type (object, relationship and mixed).
An object (relationship) relation captures the information of
objects (relationships), namely, the single-valued attributes
of an object class (relationship type). Multivalued attributes
are stored in the component relations. A mixed relation con-
tains information of both objects and relationships, which
occurs when we have a many-to-one relationship. Two nodes
are connected if there exists a foreign key - key constraint
between the relations in these two nodes.

In Figure 1, the relations Student, Course, Faculty and
Textbook are object relations while Enrol and Teach are re-
lationship relations. Relations Lecturer and Departement
are mixed relations because of the many-to-one relationships
between lecturers and departments, and the many-to-one re-
lationships between departments and faculties respectively.
Figure 3 shows the ORM schema graph of the database.

Object Node

Relationship Node

Legend:

Mixed NodeTextbook

Teach Course

Enrol Student

FacultyLecturer Department

Figure 3: ORM schema graph of Figure 1

Figure 4 shows a query pattern for the keyword query
{Green George Code}. This pattern depicts the query in-
terpretation to find the common courses taken by students
Green and George. To generate this query pattern, we first
identify the matches of each term in the query. The term
Code matches the name of an attribute in the Course rela-
tion, while both terms Green and George match some tuple
value in the Student relation, specifically, the value of the
Sname attribute. Based on these matches, we know that
Green and George refer to two student objects and Code
refers to a course object. We create 2 Student nodes and
1 Course node to represent these objects. From the ORM
schema graph in Figure 3, the Student node and the Course
node can be connected via an Enrol node. Hence, we create
2 Enrol nodes and obtain the query pattern in Figure 4.

Course

Enrol

Enrol

Student
Sname=Green

Student
Sname=George

Figure 4: Query pattern of {Green George Code}

In this work, we want to utilize these query patterns to
capture the interpretations of a keyword query. However,
since we extend the keyword query to include GROUPBY
and aggregate functions, we need to annotate the nodes that
the GROUPBY and aggregate functions are applicable to.
Annotating the appropriate nodes is important as it will fa-
cilitate the translation of the query pattern into SQL state-
ments to retrieve the correct answers for the aggregate query.
We will discuss how we achieve this in the next section.

3. AGGREGATE QUERIES ON NORMAL-
IZED DATABASE

Given a keyword query Q = {t1 t2 · · · tn}, we first classify
the terms in the query into basic terms and operators. A ba-
sic term matches a relation name, or an attribute name, or
a tuple value in the database, while an operator matches
GROUPBY or an aggregate function. We use the basic
terms in a query to generate an initial query pattern P
which contains a set of nodes that represent the objects or
relationships referred to by the basic terms. The nodes are
connected based on the ORM schema graph as described
in [15]. A node is annotated with the condition a = t if
the basic term t refers to the value of the attribute a of the
object/relationship.

Next, we consider the operators in the query. For each
operator ti ∈ Q, we examine the matches of its subsequent
term ti+1 in Q and annotate the query pattern P as follows:

1. ti+1 matches the name of some object/mixed/relationship
relation.

This indicates that ti+1 refers to some object or rela-
tionship, and the operator ti is applied on the iden-
tifier k of this object/relationship. We annotate the
node that represents this object/relationship in P with
ti(k), k is given by the primary key of the relation.

2. ti+1 matches the name of a component relation or an
attribute name.

This indicates that ti+1 refers to some attribute a of
an object or relationship, and ti is applied on this ob-
ject/relationship attribute. We annotate the node that
represents this object/relationship in P with ti(a).

The following example illustrates the various annotations.

Example 1. Consider the keyword query Q4 = {Green
George COUNT Code}. Figure 4 shows the query pattern
obtained using the basic terms Green, George and Code. For
the operator COUNT, its subsequent term Code matches the
name of an attribute in the Course relation. Hence, we
annotate the Course node with COUNT(Code). Figure 5(a)
shows the annotated query pattern P1 that depicts the query
interpretation to find the total number of courses taken by
students Green and George.

On the other hand, the query Q5 = {COUNT Lecturer
GROUPBY Course} has two basic terms Lecturer and Course.
We generate a query pattern that contains a Teach rela-
tionship node between the objects Lecturer and Course. For
the operator GROUPBY, since its subsequent term Course
matches the name of the Course relation, and refers to a
course object, we obtain the identifier of the course object
and annotate the corresponding Course node in the query pat-
tern with GROUPBY(Code). Similarly, the operator COUNT
has a subsequent term Lecturer that matches the name of
the Lecturer relation. We annotate the Lecturer node with
COUNT(Lid) and obtain the annotated query pattern P2 in
Figure 5(b). This query pattern indicates that the user is
interested in the number of lecturers for each course. 2

After obtaining the annotated query patterns, we will
translate them into SQL statements. The straightforward
way to translate an annotated query pattern is to join the
relations of all the nodes in the pattern, select the tuples that

Course
COUNT(Code)

Enrol

Enrol

Student
Sname=Green

Student
Sname=George Course

GROUPBY(Code)

Teach

Lecturer
COUNT(Lid)

(a) P1 (b) P2

Figure 5: Annotated query patterns of Q4 and Q5

satisfy the conditions imposed by basic terms from the join
result, and then apply GROUPBY and aggregate function(s)
on the selected tuples. However, this may generate an SQL
statement that gives an incorrect answer to the query.

Example 2. In Figure 5(a), the query pattern P1 con-
tains an object node Student that is annotated with the condi-
tion Sname = Green. However, there are two students called
Green in the database in Figure 1. If we only impose the
condition Sname = Green on the Student relation, the SQL
statement generated will count the total number of courses
taken by these two students together, which is not correct.

Similarly, if we simply translate the query pattern P2 in
Figure 5(b) into an SQL statement that joins the relations
Teach, Lecturer and Course, and apply the count aggre-
gate on the lecturer id Lid after grouping the tuples by the
course code Code, we may obtain wrong answers as the same
lecturer may be counted multiple times. This is because the
Teach node in P2 is in fact a ternary relationship involv-
ing the objects course, lecturer and textbook (see the ORM
schema graph in Figure 3). Since different Bids may have
the same Lid and Code, we should project the Teach relation
on the foreign keys 〈Lid,Code〉 to remove duplicates before
joining with the other relations Lecturer and Course. 2

The above example demonstrates the need to examine the
type of nodes in a query pattern if we want to generate
the SQL statement correctly. In particular, if we have an
object/mixed node v that is annotated with a condition a =
t, then we should apply the GROUPBY on the primary key
of the object/mixed relation of v in order to distinguish the
objects that have the same value t for attribute a. Further, if
the query pattern contains a relationship node u, we should
look at its corresponding node w in the ORM schema graph
to determine if a projection is needed to remove duplicates.

Given a query pattern P , we generate the various clauses
in an SQL statement as follows:

SELECT clause. If a node v ∈ P is annotated with t(a)
and t matches an aggregate function, we include t in the
SELECT clause. t is applied on the attribute a.

FROM clause. The FROM clause includes the relations
of all the nodes in P . However, for each relationship node
u ∈ P , we check its corresponding node w in the ORM
schema graph. Let Su = {u1, u2, · · · , ux} be a set of ob-
ject/mixed nodes that are directly connected to u in the
query pattern P , and Sw = {w1, w2, · · · , wy} be the set
of object/mixed nodes that are directly connected to w in
the ORM schema graph. If x < y, then this indicates
that P contains a subset of the participating objects of the
relationship w. In this case, we project the foreign keys
k1, k2, · · · , kx in the relation of u such that ki references the
relation of ui in Su, i ∈ [1, x]. This projection eliminates

duplicates and we replace the relation of u in the FROM
clause with the relation obtained by this projection.

WHERE clause. The WHERE clause joins all the rela-
tions in the FROM clause based on foreign key - key con-
straints. Moreover, for each node v ∈ P that is annotated
with a condition a = t, we include the condition “Rv.a con-
tains t” where Rv is the relation corresponding to v.

GROUPBY clause. If a node v is annotated with t(a)
and t matches GROUPBY, then we include the attribute a
in the GROUPBY clause. Further, for each object/mixed
node v that is annotated with a = t, we include the primary
key of the object/mixed relation corresponding to v in the
GROUPBY clause.

Example 3. Consider the query pattern P1 in Figure 5(a)
for the query Q4 = {Green George COUNT Code}. The
Course node is annotated with COUNT(Code), so we include
the aggregate function COUNT (Code) in the SELECT clause.
The FROM clause contains the relations corresponding to
each of the nodes in P1. Then we add the conditions to join
these relations in the WHERE clause, as well as the condi-
tions in the two annotated Student object nodes. Since P1

contains two object nodes that are annotated with conditions
Sname = Green and Sname = George respectively, we include
the ids of their relations in the GROUPBY clause, and ob-
tain the following SQL statement:

SELECT COUNT(C.Code) AS numCode

FROM Course C, Enrol E1, Student S1, Enrol E2, Student S2

WHERE C.Code=E1.Code AND C.Code=E2.Code

AND E1.Sid=S1.Sid AND S1.Sname contains ‘Green’

AND E2.Sid=S2.Sid AND S2.Sname contains ‘George’

GROUP BY S1.Sid, S2.Sid

By applying GROUPBY on the two student ids, we can
distinguish the students s2 and s3 so that the aggregate func-
tion COUNT is computed for each of their courses. 2

Example 4. Next, let us translate the query pattern P2 in
Figure 5(b) for the query Q5 = {COUNT Lecturer GROUPBY
Course}. The Lecturer node is annotated with COUNT(Lid)
while the Course node is annotated with GROUPBY(Code).
Hence, we include the aggregate function COUNT (Lid) in
the SELECT clause, and the attribute Code in the GROUPBY
clause. In addition, the Teach node in P2 is connected to two
object/mixed nodes, while the corresponding Teach node in
the ORM schema graph in Figure 3 is connected to three
object/mixed nodes. We generate a subquery “SELECT DIS-
TINCT Lid, Code FROM Teach” to project the attributes Lid
and Code in the Teach relation and eliminate any dupli-
cates of 〈Lid,Code〉. The result of this subquery is used to
join the other relations in the FROM clause. The SQL state-
ment generated is as follows:

SELECT count(L.Lid) AS numLid

FROM Lecturer L, Course C,

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE L.Lid=T.Lid AND T.Code=C.Code

GROUP BY C.Code 2

3.1 Nested Aggregate Queries
So far, we have described how to handle keyword queries

involving simple aggregate functions and GROUPBY. In or-
der to maximize the power of aggregate queries, we also want
to support queries with nested aggregate functions.

Given a keyword query Q = {t1 t2 · · · tn}, we relax the
constraints on the terms so that if the term ti, i < n matches
an aggregate function, the next term ti+1 can also match an
aggregate function. In this case, the aggregate function ti is
applied on the result of the aggregate function ti+1.

Let P be a query pattern obtained from basic terms in the
query. We annotate P with ti(f), where f is the attribute
name assigned to the result of aggregate function ti+1. Then
we generate a nested SQL statement for P . The inner query
computes the aggregate function ti+1, while the outer query
includes the inner query in the FROM clause and computes
the aggregate function ti.

AVG(numLid)

Course
GROUPBY(Code)

TeachLecturer
COUNT(Lid)

Figure 6: Query pattern in Example 5

Example 5. Suppose the user issues a query {AVG COUNT
Lecturer GROUPBY Course} to find the average number of
lecturers that teach a course. Both the terms AVG and COUNT
match some aggregate function. We obtain the query pattern
and annotate the operators COUNT and GROUPBY. For the
AVG operator, we annotate the pattern with AVG(numLid),
where numLid is the attribute name given to the result of the
aggregate function COUNT . Figure 6 shows the annotated
query pattern. To translate the query pattern, we first gener-
ate the inner SQL query similar to that in Example 4. Then
we include it in the FROM clause of the outer SQL query to
compute the aggregate function AV G. The SQL statement
generated is as follows:

SELECT AVG(R.numLid) AS avgnumLid

FROM (SELECT COUNT(L.Lid) AS numLid

FROM Lecturer L, Course C,

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE L.Lid=T.Lid AND T.Code=C.Code

GROUP BY C.Code) R 2

4. AGGREGATE QUERIES ON DENORMAL-
IZED DATABASE

Relations in a relational database are often denormalized
to reduce the number of joins and improve query processing
performance. A relational database that contains denor-
malized relations is called a denormalized database. The
denormalization process will duplicate information in the
database and we may obtain incorrect results for keyword
queries involving aggregates.

Recall that in Figure 2, the Lecturer relation is denor-
malized by adding a foreign key that references the Faculty
relation. This allows queries that are frequently issued on
lecturers and their faculties to be answered quickly without
the need to join the Department relation. Given a query
Q3 = {Engineering COUNT Department}, SQAK will join the
relations Lecturer, Department and Faculty and return in-
correct number of departments in the Engineering faculty as
it does not handle denormalized relations.

In order to generate SQL statements correctly for keyword
queries involving aggregates, we need to determine if rela-
tions are denormalized. This can be done by examining the
functional dependencies that hold on the relations.

Consider the denormalized relation Enrolment in Fig-
ure 7 that is obtained by joining the Student, Enrol and
Course relations in Figure 1. The following functional de-
pendencies hold in the Enrolment relation:

• Sid→ Sname,Age

• Code→ T itle, Credit

• Sid, Code→ Grade

We deduce that {Sid, Code} is the key of Enrolment rela-
tion, which violates second normal form (2NF) definition.

Enrolment

Sid Sname Age Code Title Credit Grade

s1 George 22 c1 Java 5.0 A

s1 George 22 c2 Database 4.0 B

s1 George 22 c3 Multimedia 3.0 B

s2 Green 24 c1 Java 5.0 A

s3 Green 21 c1 Java 5.0 A

s3 Green 21 c3 Multimedia 3.0 B

Figure 7: A denormalized relation

A naive approach to handle a keyword query involving ag-
gregate functions on the denormalized database is to gener-
ate a copy of the database where every relation is normalized
and then process the query as described in Section 3. How-
ever, this approach is expensive and not feasible in practice.

We observe that although the relations are denormalized,
the information of objects and relationships in the database
remain the same. Hence, if we can keep track of the objects
and relationships information in a denormalized database,
then we can continue to process keyword queries involving
aggregates correctly.

Recall that the ORM schema graph captures the informa-
tion of objects and relationships in the database by classi-
fying the relations into different types. These relations are
assumed to be in 3NF. Thus, we generate a normalized view
of the denormalized database comprising of a minimal set
of relations in 3NF. Then we classify the relations in this
normalized view and construct the ORM schema graph to
represent the semantics of objects and relationships in the
denormalized database.

Let D = {R1, R2, · · · , Rj} be the set of relations in the
original database schema, and D′ be the set of relations in
the normalized view. For each Ri ∈ D, 1 ≤ i ≤ j, if Ri is in
3NF, then we add it to D′. Otherwise, we normalize Ri into
a set of relations in 3NF and add them to D′. Finally, rela-
tions in D′ with the same key are merged. We use relational
algebra operators to express the mappings of the relations
from D to D′, and vice versa.

Example 6. Let us generate the normalized view of the
denormalized university database schema D below:

Teach(Code, Lid,Bid)

Textbook(Bid, Tname, Price)

Faculty(Fid, Fname)

Department(Did,Dname)

Enrolment(Sid, Code, Sname,Age, T itle, Credit,Grade)

Lecturer(Lid, Lname,Did, F id)

Since the relations Teach, Textbook, Department and
Faculty are all in 3NF, we add them to the normalized view
D′ directly. To avoid confusion, we name these relations
in D′ as Teach′, Textbook′, Department′ and Faculty′ re-
spectively. For the Enrolment relation, we decompose it

into the 3NF relations Student′, Enrol′ and Course′, and
add them to D′. Similarly, we decompose the Lecturer re-
lation into two relations Lecturer′(Lid, Lname,Did) and
DF ′(Did, F id). Since both the Department′(Did,Dname)
and the DF ′(Did, F id) relations have the same key {Did},
we merge them into one relation Department′(Did,Dname,
F id). Thus, the normalized view D′ will have the relations:

Teach′(Code, Lid,Bid)

Textbook′(Bid, Tname, Price)

Faculty′(Fid, Fname)

Department′(Did,Dname, F id)

Student′(Sid, Sname,Age)

Enrol′(Sid, Code,Grade)

Course′(Code, T itle, Credit)

Lecturer′(Lid, Lname,Did)

Table 1 shows the mappings of the relations in D and D′. 2

Table 1: Mappings of relations in Example 6

Teach = Teach′

Textbook′ = Textbook
Faculty = Faculty′

Department = ΠDid,Dname(Department′)
Enrolment = Student′ ./ Enrol′ ./ Course′

Lecturer = Lecturer′ ./ ΠDid,Fid(Department′)

(a) From original schema D to normalized view D′

Teach′ = Teach
Textbook′ = Textbook
Faculty′ = Faculty
Department′ = Department ./ ΠDid,Fid(Lecturer)
Student′ = ΠSid,Sname,Age(Enrolment)
Enrol′ = ΠSid,Code,Grade(Enrolment)
Course′ = ΠCode,T itle,Credit(Enrolment)
Lecturer′ = ΠLid,Lname,Did(Lecturer)

(b) From normalized view D′ to original schema D

Next, we construct the ORM schema graph G of the database
based on the normalized view D′. Given a query Q on the
denormalized database with schema D, We first identify the
matches of each basic term in the denormalized database.

Let R be the relation in D such that a basic term t matches
the relation name of R, or the name of an attribute in R, or
the value of some tuples in R. We obtain the corresponding
relations of R in D′ based on the mappings from D to D′.
From these relations in D′, we generate the query patterns
based on G, and annotate these patterns with the operators
in the query as described in Section 3.

Finally, we translate the annotated query pattern into an
SQL statement to be executed over the original denormal-
ized database. This requires us to map the relations in the
query pattern back to their corresponding relations in D.
Depending on the mappings, a relation R′ that corresponds
to a node in the query pattern may become a subquery in
the SQL statement as we illustrate in the following example.

Example 7. Suppose we denormalize the database in Fig-
ure 1 based on the schema in Example 6. Consider the query
Q3 = {Engineering COUNT Department}. The term Engi-
neering matches some tuple value in the Faculty relation,
while Department matches the name of the Department re-
lation. Based on Table 1(a), these two relations correspond
to relations Faculty′ and Department′ respectively. This
indicates that the term Engineering refers to a faculty object,

while the term Department refers to a department object.
Based on the ORM schema graph in Figure 3, we generate
a query pattern that connects a Faculty node and a Depart-
ment node, and annotate it with the operator COUNT. Fig-
ure 8 shows the query pattern obtained. From the mappings
in Table 1(b), we generate the SQL statement:

SELECT COUNT(D’.Did) AS numDid

FROM Faculty F’,

(SELECT DISTINCT D.Did, D.Dname, L.Fid

FROM Department D, Lecturer L WHERE D.Did=L.Did) D’

WHERE D’.Fid=F’.Fid AND F’.Fname contains ‘Engineering’

GROUP BY F’.Fid

Note that we have a subquery for the Department′ rela-
tion based on the mapping Department′ = Department ./
ΠDid,Fid(Lecturer). 2

Faculty
Fname=Engineering

Department
COUNT(Did)

Figure 8: Query pattern in Example 7

4.1 Query Rewriting
Given a query pattern P , the mapping from the relation

R′ ∈ D′ to the relation R ∈ D for a node in P may often
involve part of attributes of R. The SQL statement obtained
may contain a lot of subqueries. Joining relations obtained
from subqueries is time consuming due to the lack of indexes.

Example 8. Consider the query pattern in Figure 5(a)
for the query Q4 = {Green George COUNT Code}. The SQL
statement generated has 5 subqueries for the denormalized
university database:

SELECT COUNT(C.Code) AS numCode FROM

(SELECT DISTINCT Code, Title, Credit FROM Enrolment) C’,

(SELECT Sid, Code, Grade FROM Enrolment) E1’,

(SELECT DISTINCT Sid, Sname, Age FROM Enrolment) S1’,

(SELECT Sid, Code, Grade FROM Enrolment) E2’,

(SELECT DISTINCT Sid, Sname, Age FROM Enrolment) S2’

WHERE C’.Code=E1’.Code AND E1’.Sid=S1’.Sid AND

C’.Code=E2’.Code AND E2’.Sid=S2’.Sid AND

S1’.Sname contains ‘Green’ AND

S2’.Sname contains ‘George’

GROUP BY S1’.Sid, S2’.Sid 2

Hence, it is crucial to rewrite the generated SQL state-
ment to improve query performance. We observe that some
attribute in SELECT clause of the subqueries are never
used, and thus can be removed. In Example 8, we can
rewrite the subquery“SELECT DISTINCT Code, Title, Credit
FROM Enrolment” to “SELECT DISTINCT Code FROM En-
rolment”, as the attributes Title and Credit are not used.

Further, some select conditions of the SQL statement can
be moved to the WHERE clause of the subqueries so that
unsatisfied tuples can be filtered out before joining, e.g., we
can rewrite the subquery “SELECT DISTINCT Sid, Sname,
Age FROM Enrolment” to “SELECT DISTINCT Sid, Sname,
Age FROM Enrolment WHERE Sname contains ‘Green’” to
filter out the students whose names are not Green.

Finally, relations are denormalized to reduce the num-
ber of joins. We can try to use the denormalized rela-
tion to replace the joining of relations obtained from sub-

queries. For example, the Enrolment relation is equiva-
lent to the joins of relations obtained from the subqueries
“SELECT DISTINCT Code, Title, Credit FROM Enrolment”,
“SELECT Sid, Code, Grade FROM Enrolment”, and “SELECT
DISTINCT Sid, Sname, Age FROM Enrolment”. Hence, we
can use the Enrolment relation to replace these subqueries.
We derive three heuristics to rewrite an SQL statement sql:

Rule 1: If a subquery projects an attribute that does not
appear in the SELECT and WHERE clause of sql, then
remove this attribute.

Rule 2: If a subquery projects an attribute a that appears
in the condition “a contains t” of sql, then put this condition
in the WHERE clause of the subquery.

Rule 3: Let s1, s2, · · · , sm be a set of subqueries in sql. if
there exists a relation R such that s1 ./ s2 ./ · · · ./ sm =
ΠL(R), where L is a superkey of R, then replace s1 ./ s2 ./
· · · ./ sm with R.

Example 9. Consider the SQL statement in Example 8.
Since the joins of the subqueries “SELECT DISTINCT Code,
Title, Credit FROM Enrolment”, “SELECT Sid, Code, Grade
FROM Enrolment”, and “SELECT DISTINCT Sid, Sname, Age
FROM Enrolment” is equivalent to the Enrolment relation,
we use the Enrolment relation to replace C′ ./ E1′ ./ S1′.
Besides, we see that the joins of the subqueries “SELECT Sid,
Code, Grade FROM Enrolment” and “SELECT DISTINCT Sid,
Sname, Age FROM Enrolment” is equivalent to a relation ob-
tained by projecting a super key (Sid, Code, T itle, Credit,
and Grade) of the Enrolment relation. Hence, we can also
use the Enrolment relation to replace E2′ ./ S2′. As a re-
sult, we rewrite the SQL and obtain the following statement:

SELECT COUNT(R1.Code) AS numCode

FROM Enrolment R1, Enrolment R2

WHERE R1.Code=R2.Code AND R1.Sname contains ‘Green’

AND R2.Sname contains ‘George’

GROUP BY R1.Sid, R2.Sid 2

5. ALGORITHMS
Given the schema D of a relational database, we first check

if every relation in D is in 3NF. If not, we generate a nor-
malized view D′ of the database, and obtain the mappings
between D and D′. Then, we use Algorithm 1 to process a
keyword query Q and generate the SQL statements.

If the database schema D is normalized, we construct the
ORM schema graph G based on D. For each term ti in
Q, if ti is a basic term, we create a set of tags for ti to
capture its interpretations, and insert this tag set into T list;
otherwise, ti is an operator and we inert it into Olist (Lines
4-9). Based on T list and G, we generate a list of query
patterns Plist. For each pattern P in Plist, we annotate P
with the operators in Olist. For each operator t in Olist,
let t′ be the next term of t in Q. If t′ is a basic term, we
check its matches in D. Let v be a node in P and R be the
relation of v. If t′ matches the name of R, then we annotate
v with t(R.key). Otherwise, if t′ matches the name of an
attribute a of R, we annotate v with t(R.a). If t′ is also
an operator, then we annotate the pattern P with t(f) to
indicate that t is a nested aggregate function (Lines 11-21).
After annotating P , we translate P into an SQL statement
sql according to D, and insert it into SQLlist (Lines 22-23).

On the other hand, if the database schema D is denor-
malized, we construct the ORM schema graph G based on

Algorithm 1: Keyword Search

Input: Q = {t1 · · · tn}, database schema D and normalized
view D′

Output: a list of SQL statements SQLlist
1 SQLlist← ∅; Plist← ∅; Tlist← ∅; Olist← ∅;
2 if D is normalized then
3 G = createORMGraph(D);
4 for i = 1 to n do
5 if ti is a basic term then
6 Tseti = createTags(ti,D, G);
7 Insert Tseti into Tlist;

8 else
9 Insert ti into Olist;

10 Plist = createPatterns(Tlist, G);
11 foreach Pattern P in Plist do
12 foreach Operator t in Olist do
13 Let t′ be the next term of t in Q;

14 if t′ is a basic term then
15 Let v be a node in P and R be the relation of v;

16 if t′ matches R then
17 Annotate v with t(R.key);

18 else if t′ matches an attribute a in R then
19 Annotate v with t(R.a);

20 else
21 Annotate P with t(f);

22 sql = translate(P , D);
23 Insert sql into SQLlist;

24 else
25 G = createORMGraph(D′);
26 for i = 1 to n do
27 if ti is a basic term then
28 Tseti = createTags(ti, D′, D, G);
29 Insert Tseti into Tlist;

30 else
31 Insert ti into Olist;

32 Plist = createPatterns(Tlist, G);
33 foreach Pattern P in Plist do
34 foreach Operator t in Olist do
35 Let t′ be the next term of t in Q;

36 if t′ is a basic term then
37 Let v be a node in P and R be the relation of v;

38 if t′ matches R then
39 Annotate v with t(R.key);

40 else if t′ matches an attribute a in R then
41 Annotate v with t(R.a);

42 else
43 Annotate P with t(f);

44 sql = translate(P , D′, D);

45 sql′ = rewrite(sql, D′, D);

46 Insert sql′ into SQLlist;

47 return SQLlist;

D′. For each basic term ti, we create the tags for ti based
on the matches in D and their mappings in D′. Similarly,
we generate a list of query patterns Plist based on the tags
and the ORM schema graph, and annotate each pattern P
in Plist with the operators. Then we translate each pattern
P into an SQL statement sql based on D′ and D. Finally,
we rewrite sql to sql′ to reduce the number of subqueries
and insert sql′ into SQLlist (Lines 25-46).

6. PERFORMANCE STUDY
In this section, we evaluate the performance of our ap-

proach to process keyword queries involving aggregrates and
group-bys. We implement the algorithms in Java and carry
out experiments on a 3.40 GHz CPU with 8 GB RAM. We
use two relational databases in our experiments: the TPC-H
database (TPCH) and the ACM Digital Library publication
(ACMDL). Table 2 shows the schemas of these databases.
We construct queries involving aggregates and group-bys for
each database. Table 3 shows the queries.

Table 2: Database schemas
TPCH
Part(partkey, pname, type, size, retailprice)
Supplier(suppkey, sname, nationkey, acctbal)
Lineitem(partkey, suppkey, orderkey)
Order(orderkey, custkey, totalprice, date, priority)
Customer(custkey, cname, nationkey, mktsegment)
Nation(nationkey, nname, regionkey)
Region(regionkey, rname)

ACMDL
Paper(paperid, procid, date, ptitle)
Author(authorid, fname, lname)
Editor(editorid, fname, lname)
Proceeding(procid, acronym, title, date, pages, publisherid)
Publisher(publisherid, code, name)
Write(authorid, paperid)
Edit(editorid, procid)

Table 3: Queries used in experiments
TPCH
T1 AVG totalprice
T2 MAX COUNT order GROUPBY nation
T3 COUNT order “royal olive”
T4 MAX acctbal “yellow tomato”
T5 COUNT supplier “Indian black chocolate”
T6 COUNT part GROUPBY supplier
T7 COUNT order SUM totalprice GROUPBY mktsegment
T8 COUNT supplier “pink rose”“white rose”

ACMDL
A1 AVG pages
A2 COUNT paper GROUPBY proceeding SIGMOD
A3 COUNT proceeding Smith
A4 MAX date Gill
A5 COUNT author “database tuning”
A6 COUNT paper MAX date IEEE
A7 COUNT paper author John Mary
A8 COUNT editor SIGIR CIKM

6.1 Effectiveness Experiments
Our approach has the ability to identify various interpre-

tations of a keyword query in order to compute answers cor-
rectly. This is achieved by examining the semantics of ob-
jects and relationships in the database. We compare our ap-
proach with SQAK [13], the state-of-the-art relational key-
word search engine that processes aggregate queries without
considering the semantics of objects and relationships.

SQAK takes an aggregate query and finds a set of relations
that are matched by query terms. A relation is matched if
a term matches the name of the relation, or the name of
one of its attributes, or the relation tuples. Based on these
relations, it generates a set of minimal connected graphs
called simple query networks (SQN). The SQNs are used to
generate the SQL statements to return the answers.

6.1.1 Results for TPCH Database
Table 4 shows the answers of queries returned by our ap-

proach and SQAK, as well as explanations for these answers.
Although both our approach and SQAK give the same an-
swer for queries T1 and T2, they differ greatly for the rest.

Queries T3 and T4 show that our approach is able to
distinguish the various interpretations of query terms that
match objects with the same value. For query T3, our ap-
proach returns the number of orders for each “royal olive”
part, while SQAK returns the number of orders for all the

“royal olive” parts. This is because we differentiate parts
with the same name by their object identifiers partkey. Sim-
ilarly, for T4, our approach returns the maximum account
balance of suppliers for each “yellow tomato” part, whereas
SQAK returns the maximum account balance among all the
suppliers that supply a “yellow tomato”.

Queries T5 and T6 show that by examining the relation-
ships and their participating objects, our approach is able to
generate SQL statements that compute the aggregates cor-
rectly. For query T5, our approach returns 4 for the number
of suppliers that supply “Indian black chocolate”. SQAK
counts the same suppliers multiple times for different the
orders and returns 22, a value that is way above the actual
number of suppliers. Similarly for T6, our approach detects
the duplicates of suppliers for different orders, and returns
the correct number of parts supplied by each supplier, while
SQAK returns incorrect answers.

Queries T7 and T8 demonstrate that our approach can an-
swer aggregate queries that SQAK does not handle. Query
T7 requires an SQL statement that contains 2 aggregate
functions in the SELECT clause. However, SQAK restricts
that the SELECT clause of a generated SQL statement spec-
ifies exactly one aggregate function. Query T8 requires an
SQL statement to join 2 Part relations, but SQAK does not
generate SQL statements that contain self joins of relations.

6.1.2 Results for ACMDL Database
Table 5 shows the answers for the queries on the ACMDL

database. Query A1 is relatively straightforward, and both
our approach and SQAK return the correct answer. For A2,
SQAK also gives the correct answer because the term SIG-
MOD matches a proceeding acronym and there is no other
proceedings with the same acronym. However, for queries
A3 and A4, there are 61 editors with name Smith and 36
authors with name Gill in the database. Since SQAK does
not distinguish the editors and authors with the same name,
it returns incorrect number of proceedings and most recent
date of papers respectively. Similarly, for A6, our approach
returns 6 answers while SQAK only returns 4 answers, as it
mixes some papers with the same title.

Query A5 involves 2 aggregate functions. Queries A6 and
A7 require self joins of two Author relations and two Editor
relations respectively. SQAK is unable to process these
queries, while our approach returns the correct answers.

6.1.3 Queries on Denormalized Databases
Next, we denormalized the ACMDL and TPCH databases,

and obtain the schemas in Table 6. We use the queries in
Table 3 on the denormalized databases and compare the re-
sults returned by our approach and SQAK.

Table 6: Denormalized database schemas
TPCH’
Ordering(partkey, suppkey, orderkey, pname, type, size,

retailprice, sname, nationkey, regionkey, acctbal,
custkey, totalprice, date, priority)

Customer(custkey, cname, nationkey, regionkey, mktsegment)
Nation(nationkey, nname)
Region(regionkey, rname)

ACMDL’
PaperAuthor(paperid, authorid, procid, date, title,

fname, lname)
EditorProceeding(editorid, procid, fname, lname,

acronym, title, date, pages, publisherid)
Publisher(publisherid, code, name)

Table 4: Answers of queries for TPCH database
Proposed Approach SQAK

Answer Explanation Answer Explanation

T1 AVG totalprice: 1.42× 105 average totalprice of orders AVG totalprice: 1.42× 105 average totalprice of orders

T2 MAX COUNT order: 6568
maximum number of orders in a
nation

MAX COUNT order: 6568
maximum number of orders in a
nation

T3
8 answers:
23, 22, 29, 27, 33, 35, 33, 27

number of orders for each “royal
olive” part

1 answers: 229 mix all “royal olive” parts

T4
13 answers:
6361.20, 9538.15, ..., 7916.56

maximum account balance of sup-
pliers for each “yellow tomato” part

1 answers: 9844.00 mix all “yellow tomato” parts

T5 COUNT supplier: 4
number of suppliers that supply
“Indian black chocolate”

COUNT supplier: 22
same suppliers are counted multi-
ple times for various orders

T6
1000 answers:
80, 80, 79, 80, ...

number of parts supplied for each
supplier

1000 answers:
593, 571, 595, 606, ...

same parts are counted multiple
times for various orders

T7
5 answers:
〈2.99× 104, 4.26× 109〉, ...,
〈3.03× 104, 4.33× 109〉

one answer for each market seg-
ment

N.A.
do not handle more than one ag-
gregate

T8 3 answers: 1, 1, 1
number of suppliers that supply a
particular “pink rose” and a partic-
ular “white rose”

N.A. do not handle self joins of relations

Table 5: Answers of queries for ACMDL database
Proposed Approach SQAK

Answer Explanation Answer Explanation
A1 AVG ages: 297 average pages of proceedings AVG ages: 297 average pages of proceedings

A2 36 answers: 84, 84, 82, ...
number of papers for each ‘SIG-
MOD’ proceeding

36 answers: 84, 84, 82, ...
number of papers for each ‘SIG-
MOD’ proceeding

A3 61 answers: 1, 1, 2, ...
number of proceedings edited by
each editor named ‘Smith’

1 answers: 62 mix all editors named ‘Smith’

A4
36 answers:
1994-05-01, 1998-08-01, ...

most recent date of papers written
by each author named ‘Gill’

1 answer: 2011-06-13 mix all authors named ‘Gill’

A5 6 answers: 2, 2, 2, 6, 2, 2
number of authors for each
“database tuning” paper

4 answers: 2, 4, 6, 4 mix papers with the same title

A6
4 answers:
〈4011, 2011-01-25〉, ...

number of papers published by
‘IEEE’ and their most recent date

N.A.
do not handle more than one ag-
gregate

A7 46 answers: 1, 32, 8, 1, ...
number of papers written by a par-
ticular author ‘John’ and a partic-
ular author ‘Mary’

N.A. do not handle self joins of relations

A8 2 answers: 1, 1
number of editors that edit a ‘SI-
GIR’ and a ‘CIKM’ proceeding

N.A. do not handle self joins of relations

Table 7: Answers of queries on denormalized TPCH
Proposed Approach SQAK

T1 AVG totalprice: 1.42× 105 AVG ages: 1.78× 105

T2 MAX COUNT order: 6568 MAX COUNT order: 26485

T3
8 answers:
23, 22, 29, 27, 33, 35, 33, 27

1 answers: 229

T4
13 answers:
6361.20, 9538.15, ..., 7916.56

1 answer: 9844.00

T5 COUNT supplier: 4 COUNT supplier: 22
T6 1000 answers: 80, 80, 79, ... 1000 answers: 593, 571, ...

T7
5 answers:
〈2.99× 104, 4.26× 109〉, ...

N.A.

T8 3 answers: 1, 1, 1 N.A.

Tables 7 and 8 show that our approach continues to return
correct answers to the queries. In contrast, SQAK either re-
turns incorrect answers or does not handle the queries. For
queries T1 and T2, SQAK returns the values 1.78×105 and
26485 respectively because the information of orders are du-
plicated in the denormalized relation Ordering. Similarly,
SQAK returns the answer 637 for A1, and 2000, 408, 14858,
etc. (36 answers) for A2, both of which are incorrect as
the information of proceedings and papers are duplicated
in the EditorProceeding and PaperAuthor relations. Note
that these queries are answered correctly by SQAK when
the database is normalized.

This set of experiments clearly demonstrate that the se-

Table 8: Answers of queries on denormalize ACMDL
Proposed Approach SQAK
A1 AVG ages: 297 AVG ages: 637

A2 36 answers: 84, 84, 82, ...
36 answers:
2000, 408, 14858, ...

A3 61 answers: 1, 1, 2, ... 1 answers: 62

A4
36 answers:
1994-05-01, 1998-08-01, ...

1 answer: 2011-06-13

A5 6 answers: 2, 2, 2, 6, 2, 2 4 answers: 2, 4, 6, 4

A6
4 answers:
〈4011, 2011-01-25〉, ...

N.A.

A7 46 answers: 1, 32, 8, 1, ... N.A.
A8 2 answers: 1, 1 N.A.

mantics of objects and relationships are important to dis-
tinguish the various interpretations of keyword queries so
that the generated SQL statements will compute statistical
information from the database correctly.

6.2 Efficiency Experiments
Finally, we compare the time taken by our approach and

SQAK to generate SQL statements. Figure 9 shows the
results for both TPCH and ACMDL queries in Table 3.

We observe that our approach is slightly slower than SQAK
for most of the queries. This is because SQAK does not an-
alyze the interpretations of keyword queries but only finds
SQNs containing all the query terms. Besides, it also does
not detect the duplications arising from denormalized re-

0

1

2

3

4

5

6

7

8

T1 T2 T3 T4 T5 T6 T7 T8

Ti
m

e
(m

s)

Proposed Approach SQAK

0

2

4

6

8

10

12

14

16

A1 A2 A3 A4 A5 A6 A7 A8

Ti
m

e
(m

s)

Proposed Approach SQAK

(a) TPCH (b) ACMDL

Figure 9: Comparison of the time taken by our approach and SQAK to generate SQL statements

lations. As the SQL execution time dominates the overall
processing time (in seconds), the extra time (in ms) required
by our approach to interpret the keyword queries and detect
the duplicates is a good tradeoff and important to retrieve
correct answers from the databases.

7. RELATED WORK
Existing works on keyword search in relational databases

can be broadly classified into data graph approach and schema
graph approach. In the data graph approach, the relational
database is modeled as a graph where each node represents
a tuple and each edge represents a foreign key - key refer-
ence. BANKS [8] defines an answer to a keyword query as
a Steiner tree that contains all the keywords, and proposes
a backward expansion search to find the Steiner trees. [9]
use a bidirectional expansion technique to reduce the search
space. [4] employs a dynamic programming technique to
identify the top-k minimal group Steiner trees.

In the schema graph approach, the database schema is
modeled as a graph where each node represents a relation
and each edges represents a foreign key - key constraint.
DISCOVER [7] proposes a breadth-first traverse on the schema
graph to generate a set of SQL statements. Each SQL joins
a minimal number of relations and ouputs tuples that con-
tain all the keywords. [6] and [11] relax the requirement
that output tuples should contain all the query keywords,
and develop top-k keyword query techniques to improve ef-
ficiency of [7]. [1] exploits the relative positions of keywords
in a query and auxiliary external knowledge to generate SQL
statements that satisfy users’ search intention.

The above works only consider individual tuples that con-
tain query keywords and try to link them by foreign key - key
references, and largely ignore statistical information in these
tuples. [16] studies the problem of aggregate keyword search
on a universal relation. Given a keyword query, it finds a set
of tuples that are grouped by a minimal number of attributes
and contain all the keywords. [12] classifies the query key-
words into dimensional keywords and general keywords, and
computes the subgraphs that contain all the dimensional
keywords and some general keywords. Then these subgraphs
are grouped based on the dimensional keywords to compute
the statistical information of the subgraphs. However, none
of these works can answer our aggregate queries.

SQAK [13] generates a set of SQL statments from a key-
word query containing reserved keywords to indicate the
aggregate functions in the SQL statements. But, it does
not consider the semantics of objects and relationships in
the database, and thus returns incorrect answers as we have
highlighted. Moreover, SQAK cannot handle queries when
the relations in the database are denormalized.

8. CONCLUSION
In this paper, we have studied the problem of answer-

ing keyword queries involving aggregates and group-bys in
relational databases. This is achieved by capturing the se-
mantics of objects and relationships in the database with the
ORM schema graph. Given a query involving aggregates and
group-bys, we utilize the ORM schema graph to determine
the various interpretations of the queries. Based on these
interpretations, we generate SQL statements which apply
aggregate functions to compute the statistical information.
We further detect duplications of objects and relationships
arising from denormalized relations, so that the aggregate
functions will not repeatedly compute statistics for the same
information. Experimental results demonstrate the our ap-
proach returns correct answers to aggregate queries both on
normalized and denormalized databases.

9. REFERENCES
[1] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, and

Y. Velegrakis. Keyword search over relational databases: a
metadata approach. In SIGMOD, 2011.

[2] J. Coffman and A. C. Weaver. A framework for evaluating
database keyword search strategies. In CIKM, 2010.

[3] J. Coffman and A. C. Weaver. Learning to rank results in
relational keyword search. In CIKM, 2011.

[4] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.
Finding top-k min-cost connected trees in databases. In ICDE,
2007.

[5] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked
keyword searches on graphs. In SIGMOD, 2007.

[6] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
IR-style keyword search over relational databases. In VLDB,
2003.

[7] V. Hristidis and Y. Papakonstantinou. DISCOVER: keyword
search in relational databases. In VLDB, 2002.

[8] A. Hulgeri and C. Nakhe. Keyword searching and browsing in
databases using BANKS. In ICDE, 2002.

[9] V. Kacholia, S. Pandit, and S. Chakrabarti. Bidirectional
expansion for keyword search on graph databases. In VLDB,
2005.

[10] G. Li, B. C. Ooi, and J. Feng. EASE: an effective 3-in-1
keyword search method for unstructured, semi-structured and
structured data. In SIGMOD, 2008.

[11] Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK: top-k
keyword query in relational databases. In SIGMOD, 2007.

[12] L. Qin, J. X. Yu, and L. Chang. Computing structural statistics
by keywords in databases. In ICDE, 2011.

[13] S. Tata and G. M. Lohman. SQAK: Doing more with keywords.
In SIGMOD, 2008.

[14] X. Yu and H. Shi. CI-Rank: Ranking keyword search results
based on collective importance. In ICDE, 2012.

[15] Z. Zeng, Z. Bao, T. N. Le, M. L. Lee, and W. T. Ling.
Expressq: Identifying keyword context and search target in
relational keyword queries. In CIKM, 2014.

[16] B. Zhou and J. Pei. Answering aggregate keyword queries on
relational databases using minimal group-bys. In EDBT, 2009.

