
T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l of C o m p u t i n g
Computing 1, 13 Computing Drive, Singapore 117417

TRA4/09

Query by Output

Quoc Trung Tran, Chee-Yong Chan
and Srinivasan Parthasarathy

April 2009

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the author,
at the address shown on the cover.

OOI Beng Chin
Dean of School

Query by Output

Quoc Trung Tran 1 Chee-Yong Chan 1 Srinivasan Parthasarathy 2?

1 Department of Computer Science
National University of Singapore

{tqtrung,chancy}@comp.nus.edu.sg
2 The Ohio State University
srini@cse.ohio-state.edu

Technical report TRA4/09

Abstract. It has recently been asserted that the usability of a database
is as important as its capability. Understanding the database schema,
the hidden relationships among attributes in the data all play an impor-
tant role in this context. Subscribing to this viewpoint, in this paper, we
present a novel data-driven approach, called Query By Output (QBO),
which can enhance the usability of database systems. The central goal of
QBO is as follows: given the output of some query Q on a database D,
denoted by Q(D), we wish to construct an alternative query Q′ such that
Q(D) and Q′(D) are instance-equivalent. To generate instance-equivalent
queries from Q(D), we devise a novel data classification-based technique
that can handle the at-least-one semantics that is inherent in the query
derivation. In addition to the basic framework, we design several opti-
mization techniques to reduce processing overhead and introduce a set
of criteria to rank order output queries by various notions of utility. Our
framework is evaluated comprehensively on three real data sets and the
results show that the instance-equivalent queries we obtain are interest-
ing and that the approach is scalable and robust to queries of different
selectivities.

1 Introduction

A perennial challenge faced by many enterprises is the management of their
increasingly large and complex databases which can contain hundreds and even
thousands of tables [10, 24]. The problem is exacerbated by the fact that the
metadata and documentation for these databases are often incomplete or missing
[11]. Several different approaches have been proposed to address this important
practical issue. One example here is database structure mining where the goal is
to discover structural relationships among the database tables [1, 11, 24]. Another
example is intensional query answering where the goal is to augment query
answers with additional information to help users understand the results as well
as relevant database content [16].

? This work was done when the author was on sabbatical at National University of
Singapore in 2008.

1

In this paper, we present a novel data-driven approach called Query by Output
(QBO). QBO aims to derive interesting query-based characterizations of an input
database table which can be the result of some query or materialized view. In
contrast to conventional querying which takes an input query Q and computes
its output, denoted by Q(D), w.r.t. an input database D, the basic idea of QBO is
to take as input the output Q(D) of some query Q and compute a set of queries
Q′1, · · · , Q′

n such that each Q′i(D) is (approximately) equivalent to Q(D). We say
that two queries Q and Q′ are instance-equivalent w.r.t. a database D (denoted
by Q ≡ Q′), if Q(D) and Q′(D) are equivalent.

Before we discuss the specific contributions of this paper, we briefly highlight
some of the use-case scenarios of our proposal.

QBO Applications. The most obvious application of QBO is in conventional
database querying where Q is known. Consider the scenario when a user sub-
mits a query Q to be evaluated on a database D. Instead of simply return-
ing the query result Q(D) to the user, the database system can also apply
QBO to compute additional useful information about Q and D in the form of
instance-equivalent queries. Besides providing alternative characterizations (po-
tential simplifications) of Q(D), IEQs can also help users to better understand
the database schema. Specifically, since many enterprise data schema are very
complex and large, potentially involving hundreds and even thousands of rela-
tions [24], the part of the database schema that is referenced by the user’s query
may be quite different from that referenced by an IEQ. The discovery of this
alternative “path” in the schema to generate an instance-equivalent query can
aid the user’s understanding of the database schema or potentially help refine
the user’s initial query.

Another obvious application of QBO is that it can help the user better under-
stand the actual data housed within the database. Unusual or surprising IEQs
can be useful for uncovering hidden relationships among the data. In several
instances simpler or easier to understand relationships may be uncovered which
can again aid in the understanding of the data contained within the complex
database and help the user refine future queries posed to the database.

QBO may also have interesting applications in database security where at-
tackers who have some prior domain knowledge of the data may attempt to
derive sensitive information. For example, if an attacker is aware of the existing
correlation structure in the data, they can easily use this information to for-
mulate two or more separate queries which on paper look very different (e.g.
using different selection criteria) but in reality may be targeting the same set of
tuples in the database. Such sets or groups of queries can potentially be used to
reverse-engineer the privacy preserving protocol in use. Subsequently, sensitive
information can be gleaned. As a specific example, consider a protocol such as
ε-diversity [25] which relies on detecting how similar the current query is with
a previous set of queries (history) answered by the database, to determine if
the current query can be answered without violating the privacy constraints.
The notion of similarity used by such methods relies primarily on the selection
attributes and thus such protocols will fail to recognize IEQs that use different

2

selection attributes. Privacy in such protocols will then be breached. Automati-
cally recognizing such IEQs via the methods proposed in this paper and subse-
quently leveraging this information to enhance such protocols may provide more
stringent protection against such kinds of attacks.

Another important class of QBO applications is in scenarios where the input
consists of Q(D) but not Q itself. Such scenarios are common in data analysis
and exploration applications where the information provided is often incom-
plete: the data set Q(D), which is produced by some query/view Q, is available
but not the query/view [11]. The ability to reverse engineer Q from Q(D) then
becomes important. Annotating data with relevant metadata is essential in cu-
rated databases [6]. Such reverse engineering is also useful for generating concise
query-based summaries of groups of tuples of interest to the user (e.g., dominant
tuples selected by skyline queries [4]).

Contributions. In this paper, we introduce the novel problem of QBO and pro-
pose a solution, TALOS, that models the QBO problem as a data classification task
with a unique property that we term at-least-one semantics. To handle data
classification with this new semantics, we develop a new dynamic class labeling
technique and also propose effective optimization techniques to efficiently com-
pute IEQs. Our experimental evaluation of TALOS demonstrates its efficiency and
effectiveness in generating interesting IEQs.

2 Overview of Our Approach

The QBO problem takes as inputs a database D, an optional query Q, and the
query’s output Q(D) (w.r.t. D) and computes one or more IEQs Q′, where Q
and Q′ are IEQs if Q(D) ≡ Q′(D). We refer to Q as the input query, Q(D) as
the input result, and Q′ as the output query.

First, let us state the following theoretical results that we have established
for variants of the QBO problem.

Theorem 1. Given an input query Q, we define QBOS to be the problem to find
the output query Q′ where Q′ is a conjunctive query that involves only projection
and selection (with predicates in the form “Ai op c”, Ai is an attribute, c is
constant and op ∈ {<,≤,=, 6=, >,≥}) such that (1): Q′(D) ≡ Q(D) and (2)
the number of operators (AND, OR and NOT) used in the selection condition is
minimized. Then QBOS is unlikely to be in P .

Proof Sketch: We prove Theorem 1 by reducing the Minimization Circuit Size
Problem to QBOS . Details are given in Appendix A. ¤

Theorem 2. Given an input query Q, we define QBOU to be the problem to
find an output query Q′ of the form Q′ = Q1 UNION Q2 · · · UNION Qk where
each Qi is in the SPJ form and the select-clause refers to only attributes in the
schema such that Q′(D) = Q(D) and k is minimized. Then QBOU is NP-hard.

3

Proof Sketch: We prove Theorem 2 by reducing the Set Cover Problem to
QBOU . Details are given in A. ¤
Theorem 3. Given an input query Q, we define QBOG to be the problem to
find an output query Q′ such that Q′(D) ≡ Q(D) and Q′ can contain arbitrary
arithmetic expressions in the select-clause. Then QBOG is PSPACE-hard.

Proof Sketch: We prove Theorem 3 by reducing the Integer Circuit Evaluation
Problem to QBOG. Details are given in A. ¤

Given the above results, in this paper, we consider relational queries Q
where the select-clause refer to only attributes (and not to constants or arith-
metic/aggregation/string expressions) to ensure that Q′ can be derived efficiently
from Q(D). We also require that Q(D) 6= ∅ for the problem to be interesting.

For simplicity, our approach considers only select-project-join (SPJ) queries
for Q′ where all the join predicates in Q′ are foreign-key joins. Thus, our ap-
proach requires only very basic database integrity constraint information (i.e.,
primary and foreign key constraints). Based on the knowledge of the primary
and foreign key constraints in the database, the database schema can be mod-
eled as a schema graph, denoted by SG, where each node in SG represents a
relation, and each edge between two nodes represents a foreign-key join between
the relations corresponding to the nodes.

For ease of presentation and without loss of generality, we express each Q′ as
a relational algebra expression. To keep our definitions and notations simple and
without loss of generality, we shall assume that there are no multiple instances
of a relation in Q and Q′.

Running Example. In this paper, we use a database housing baseball statis-
tics1 for our running example as well as in our experiments. Part of the schema
is illustrated in Figure 1, where the key attribute names are shown in bold. The
Master relation describes information about each player (identified by pID): the
attributes name, country, weight, bats, and throws refer to his name, birth coun-
try, weight (in pounds), batting hand (left, right, or both), and throwing hand
(left or right), respectively. The Batting relation provides the number of home
runs (HR) of a player when he was playing for a team in a specific year and
season (stint). The Team relation specifies the rank obtained by a team for a
specified year.

Notations. Given a query Q, we use rel(Q) to denote the collection of relations
involved in Q (i.e., relations in SQL’s from-clause); proj(Q) to denote the set
of projected attributes in Q (i.e., attributes in SQL’s select-clause); and sel(Q)
to denote the set of selection predicates in Q (i.e., conditions in SQL’s where-
clause).

2.1 Instance-Equivalent Queries (IEQs)

Our basic definition of instance-equivalent queries (IEQs) requires that the IEQs
Q and Q′ produce the same output (w.r.t. some database D); i.e., Q(D) ≡ Q′(D).
1 http://baseball1.com/statistics/

4

pID name country weight bats throws
P1 A USA 85 L R
P2 B USA 72 R R
P3 C USA 80 R L
P4 D Germany 72 L R
P5 E Japan 72 R R

pID year stint team HR
P1 2001 2 PIT 40
P1 2003 2 ML1 50
P2 2001 1 PIT 73
P2 2002 1 PIT 40
P3 2004 2 CHA 35
P4 2001 3 PIT 30
P5 2004 3 CHA 60

team year rank
PIT 2001 7
PIT 2002 4
CHA 2004 3

(a) Master (b) Batting (c) Team

Fig. 1. Running Example: Baseball Data Set D

The advantage of this simple definition is that it does not require the knowledge
of Q to derive Q′, which is particularly useful for QBO applications where Q is
either missing or not provided. However, there is a potential “accuracy” tradeoff
that arises from the simplicity of this weak form of equivalence: an IEQ may be
“semantically” quite different from the input query that produced Q(D) as the
following example illustrates.

Example 1. Consider the following three queries on the baseball database D in
Figure 1:

Q1 = πcountry(σbats=“R”∧throws=“R”(Master)),
Q2 = πcountry(σbats=“R”∧weight≤72(Master)), and
Q3 = πcountry(σbats=“R”(Master)).
Observe that although all three queries produce the same output after pro-

jection ({USA,Japan}), only Q1 and Q2 select the same set of tuples {P2, P5}
from R. Specifically, if we modify the queries by replacing the projection at-
tribute “country” with the key attribute “pID”, we have Q1(D) = {P2,P5},
Q2(D) = {P2,P5} and Q3(D) = {P2,P3,P5}. Thus, while all three queries are
IEQs, we see that the equivalence between Q1 and Q2 is actually “stronger”
(compared to that between Q1 and Q3) in that both queries actually select the
same set of relation tuples. ¤

However, if Q is provided as part of the input, then we can define a stronger
form of instance equivalence as suggested by the above example. Intuitively,
the stricter form of instance equivalence not only ensures that the instance-
equivalent queries produce the same output (w.r.t. some database D), but it
also requires that their outputs be projected from the same set of “core” tuples.
We now formally characterize weak and strong IEQs based on the concepts of
core relations and core queries.

Core relations. Given a query Q, we say that S ⊆ rel(Q) is a set of core
relations of Q if S is a minimal set of relations such that for every attribute
Ri.A ∈ proj(Q), (1) Ri ∈ S or (2) Q contains a chain of equality join predicates
“Ri.A = · · · = Rj .B” such that Rj ∈ S.

Intuitively, a set of core relations of Q is a minimal set of relations in Q that
“cover” all the projected attributes in Q. As an example, if Q = πR1.Xσp(R1 ×
R2 × R3) where p = (R1.X = R3.Y) ∧ (R2.Z = R3.Z), then Q has two sets of
core relations, {R1} and {R3}.

5

Core queries. Given a query Q where S ⊆ rel(Q), we use QS to denote the
query that is derived from Q by replacing proj(Q) with the key attribute(s) of
each relation in S. If S is a set of core relations of Q, we refer to QS as a core
query of Q.

Strong & weak IEQs. Consider two IEQs Q and Q′ (w.r.t. a database D);
i.e., Q(D) ≡ Q′(D). We say that Q and Q′ are strong IEQs if Q has a set of core
relations S such that (1) Q′S is a core query of Q′, and (2) QS(D) and Q′S(D)
are equivalent. IEQs that are not strong are classified as weak IEQs.

The strong IEQ definition essentially requires that both Q and Q′ share a
set of core relations such that Q(D) and Q′(D) are projected from the same set
of selected tuples from these core relations. Thus, in Example 1, Q1 and Q2 are
strong IEQs whereas Q1 and Q3 are weak IEQs.

Note that in our definition of strong IEQ, we only impose moderate restric-
tions on Q and Q′ (relative to the weak IEQ definition) so that the space of
strong IEQs is not overly constrained and that the strong IEQs generated are
hopefully both interesting as well as meaningful.

As in the case with weak IEQs, two strong IEQs can involve different sets of
relations. As an example, suppose query Q selects pairs of records from two core
relations, Supplier and Part, that are related via joining with a (non-core) Supply
relation. Then it is possible for a strong IEQ Q′ to relate the same pair of core
relations via a different relationship (e.g., by joining with a different non-core
Manufacture relation).

We believe that each of the various notions of query equivalence has useful
applications in different contexts depending on the available type of informa-
tion about the input query and database. At one extreme, if both Q and the
database integrity constraints are available, we can compute semantically equiv-
alent queries. At the other extreme, if only Q(D) and the database D are avail-
able, we can only compute weak IEQs. Finally, if both Q and the database D
are available, we can compute both weak and strong IEQs.

Precise & approximate IEQs. It is also useful to permit some perturbation so
as to include IEQs that are “close enough” to the original. Perturbations could
be in the form of extra records or missing records or a combination thereof.
Such generalizations are necessary in situations where there are no precise IEQs
and useful for cases where the computational cost for finding precise IEQs is
considered unacceptably high. Moreover, a precise IEQ Q′ might not always
provide insightful characterizations of Q(D) as Q′ could be too “detailed” with
many join relations and/or selection predicates.

The imprecision of a weak IEQ Q′ of Q (w.r.t. D) can be quantified by
|Q(D) − Q′(D)| + |Q′(D) − Q(D)|; the imprecision of a strong IEQ can be
quantified similarly. Thus, Q′ is considered an approximate (strong/weak) IEQ
of Q if its imprecision is positive; otherwise, Q′ is a precise (strong/weak) IEQ.

As the search space for IEQs can be very large, particularly with large com-
plex database schema where each relation has foreign-key joins with other rela-
tions, users should be able to restrict the search space by specifying hints/ pref-
erences in the form of control parameters. Some examples include: (1) restricting

6

Q′ to be conjunctive queries, (2) setting an upper bound on the number of selec-
tion predicates in Q′, (3) setting an upper bound on the number of relations in
Q′, (4) specifying a specific set of relations to be included (excluded) in (from)
Q′, and (5) specifying a specific set of attributes to be included (excluded) in
(from) the selection predicates in Q′. In addition to these query-specific controls,
some method-specific controls can also be applied on the IEQs search space; we
discuss some of these in Section 4. We note although all the above user hints can
be easily incorporated into our proposed algorithms, we do not delve on these
control knobs any further in the paper but instead focus on the core problem of
computing IEQs.

2.2 TALOS: Conceptual Approach

In this section, we give a conceptual overview of our approach, named TALOS
(for Tree-based classifier with At Least One Semantics), for the QBO problem.

Given an input result Q(D), to generate a SPJ Q′ that is an IEQ of Q, we
need to basically determine the three components of Q′: rel(Q′), sel(Q′), and
proj(Q′). Clearly, if rel(Q′) contains a set of core relations of Q, then proj(Q′)
can be trivially derived from these core relations2. Thus, the possibilities for Q′

depends mainly on the options for both rel(Q′) and sel(Q′). Between these two
components, enumerating different rel(Q′) is the easier task as rel(Q′) can be
obtained by choosing a subgraph G of the schema graph SG such that G contains
a set of core relations of Q: rel(Q′) is then given by all the relations represented
in G. Note that it is not necessary for rel(Q) ⊆ rel(Q′) as Q may contain
some relations that are not core relations. The reason for exploring different
possibilities for rel(Q′) is to find interesting alternative characterizations of Q(D)
that involve different join paths or selection conditions from those in Q. TALOS
enumerates different schema subgraphs by starting out with minimal subgraphs
that contain a set of core relations of Q and then incrementally expanding the
minimal subgraphs to generate larger, more complex subgraphs.

We now come to most critical and challenging part of our solution which
is how to generate “good” sel(Q′)’s such that each sel(Q′) is not only succinct
(without too many conditions) and insightful but also minimizes the imprecision
between Q(D) and Q′(D) if Q′ is an approximate IEQ. We propose to formulate
this problem as a data classification task as follows.

Consider the relation J that is computed by joining all the relations in rel(Q′)
based on the foreign-key joins represented in G. Without loss of generality, let us
suppose that we are looking for weak IEQs Q′. Let L denote the ordered listing
of the attributes in proj(Q′) such that that the schema of πL(J) and Q(D) are
equivalent3. J can be partitioned into two disjoint subsets, J = J0∪J1, such that
2 Note that even though the definition of a weak IEQ Q′ of Q does not require the

queries to share a set of core relations, we find this restriction to be a reasonable
and effective way to obtain “good” IEQs.

3 If the search is for strong IEQs, then the discussion remains the same except that L
is the ordered listing of the key attributes of a set of core relations S of Q, and we
replace Q(D) by QS(D).

7

πL(J1) ⊆ Q(D) and πL(J0) ∩ Q(D) = ∅. For the purpose of deriving sel(Q′),
one simple approach to classify the tuples in J is to label the tuples in J0, which
do not contribute to the query’s result Q(D), as negative tuples, and label the
tuples in J1 as positive tuples.

Given the labeled tuples in J , the problem of finding a sel(Q′) can now be
viewed as a data classification task to separate the positive and negative tuples
in J : sel(Q′) is given by the selection conditions that specify the positive tuples.
A natural solution is to examine if off-the-shelf data classifier can give us what
we need. To determine what kind of classifier to use, we must consider what we
need to generate our desired IEQ Q′. Clearly, the classifier should be efficient to
construct and the output should be easy to interpret and express using SQL; i.e.,
the output should be expressible in axis parallel cuts of the data space. These
criteria rule out a number of classifier systems such as neural networks, k-nearest
neighbor classification, Bayesian classifiers, and support vector machines [17].
Rule based classifiers or decision trees (a form of rule-based classifier) are a
natural solution in this context. TALOS uses decision tree classifier for generating
sel(Q′).

pID name country weight bats throws year team stint HR
P1 A USA 85 L R 2001 PIT 2 40
P1 A USA 85 L R 2003 ML1 2 50
P2 B USA 72 R R 2001 PIT 1 73
P2 B USA 72 R R 2002 PIT 1 40
P3 C USA 80 R L 2004 CHA 2 35
P4 D Germany 72 L R 2001 PIT 3 30
P5 E Japan 72 R R 2004 CHA 3 60

(a) J = Master ./pID Batting

N1

N2
N3

Weight <= 72 Weight > 72

N4 N5

HR<= 30 HR>30

D B, E

A,C

DT1

N1

N2
N3

HR<= 50 HR > 50

A, B, C, D B, E

DT2

(b) Decision trees DT1 and DT2

Fig. 2. Example of deriving IEQs for Q4 = πname (σbats=“R”∧throws=“R” Master) on
D

We now briefly describe how a simple binary decision tree is constructed to
classify a set of data records D. For expository simplicity, assume that all the
attributes in D have numerical domains. A decision tree DT is constructed in
a top-down manner. Each leaf node N in the tree is associated with a subset
of the data records, denoted by DN , such that D is partitioned among all the

8

leaf nodes. Initially, DT has only a single leaf node (i.e., its root node) which is
associated with all the records in D. Leaf nodes are classified into pure and non-
pure nodes depending on a given goodness criterion. Common goodness criteria
include entropy, classification error and the Gini index [17]. At each iteration of
the algorithm, the algorithm examines each non-pure leaf node N and computes
the best split for N that creates two child nodes, N1 and N2, for N . Each split is
computed as a function of an attribute A and a split value v associated with the
attribute. Whenever a node N is split (w.r.t. attribute A and split value v), the
records in DN are partitioned between DN1 and DN2 such that a tuple t ∈ DN

is distributed into DN1 if t.A ≤ v; and DN2 , otherwise.
A popular goodness criterion for splitting, the Gini index, is computed as

follows. For a data set S with k distinct classes, its Gini index is Gini(S) =
1−∑k

j=1(f
2
j) where fj denote the fraction of records in S belonging to class j.

Thus, if S is split into two subsets S1, S2, then the Gini index of the split is
given by

Gini(S1, S2) =
|S1| Gini(S1) + |S2| Gini(S2)

|S1|+ |S2| ,

where |Si| denote the number of records in Si. The general objective is to pick
the splitting attribute whose best splitting value reduces the Gini index the most
(the goal is to reduce Gini to 0 resulting in all pure leaf nodes).

Example 2. To illustrate how decision tree classifier can be applied to derive
IEQs, consider the following query on the baseball database D: Q4 = πname

(σbats=“R”∧throws=“R” Master). Note that Q4(D) = {B,E}. Suppose that the
schema subgraph G considered contains both Master and Batting; i.e., rel(Q′4) =
{Master,Batting}. The output of J = Master ./pID Batting is shown in Fig-
ure 2(a). Using ti to denote the ith tuple in J , J is partitioned into J0 =
{t1, t2, t5, t6} and J1 = {t3, t4, t7}. Figure 2(b) shows two example decision trees,
DT1 and DT2, constructed from J . Each decision tree partitions the tuples in
J into different subsets (represented by the leaf nodes) by applying different se-
quences of attribute selection conditions. By labeling all tuples in J1 as positive,
the IEQ derived from DT1 is given by Q′4 = πname(σstint≤1∨(stint>1∧HR>50)

(Master ./ Batting)). More details are described in Section 4.1. ¤

2.3 TALOS: Challenges

There are two key challenges in adapting decision tree classifier for the QBO
problem.

At Least One Semantics. The first challenge concerns the issue of how to
assign class labels in a flexible manner without over constraining the classification
problem and limiting its effectiveness. Contrary to the impression given by the
above simple class labeling scheme, the task of assigning class labels to J is
actually a rather intricate problem due to the fact that multiple tuples in J1 can
be projected to the same tuple in πL(J1). Recall that in the simple class labeling
scheme described, a tuple t is labeled positive iff t ∈ J1. However, note that it

9

is possible to label only a subset of tuples J ′1 ⊆ J1 as positive (with tuples in
J − J ′1 labeled as negative) and yet achieve πL(J ′1) = πL(J1) (without affecting
the imprecision of Q′). In other words, the simple scheme of labeling all tuples
in J1 as positive is just one (extreme) option out of many other possibilities.

We now discuss more precisely the various possibilities of labeling positive
tuples in J to derive different sel(Q′). Let πL(J1) = {t1, · · · , tk}. Then J1 can
be partitioned into k subsets, J1 = P1 ∪ · · · ∪ Pk, where each Pi = {t ∈
J1 | the projection of t on L is ti}. Thus, each Pi represents the subset of tuples
in J1 that project to the same tuple in πL(J1). Define J ′1 to be a subset of tuples
of J1 such that it consists of at least one tuple from each subset Pi. Clearly,
πL(J ′1) = πL(J1), and there is a total of

∏k
i=1(2

|Pi| − 1) possibilities for J ′1. For
a given J ′1, we can derive sel(Q′) using a data classifier based on labeling the
tuples in J ′1 as positive and the remaining tuples in J1 − J ′1 as negative.

Based on the above discussion on labeling tuples, each tuple in J can be
classified as either a bound tuple or free tuple depending on whether there is any
freedom to label the tuple. A tuple t ∈ J is a bound tuple if either (1) t ∈ J0 in
which case t must be labeled negative, or (2) t is the only tuple in some subset
Pi, in which case t must certainly be included in J ′1 and be labeled positive;
otherwise, t is a free tuple (i.e., t is in some subset Pi that contains more than
one tuple).

In contrast to conventional classification problem where each record in the
input data comes with a well defined class label, the classification problem for-
mulated for QBO has the unique characteristic where there is some flexibility in
the class label assignment. We refer to this property as at-least-one semantics.
To the best of our knowledge, we are not aware of any work that has addressed
this variant of the classification problem.

An obvious approach to solve the at-least-one semantics variant is to map
the problem into the traditional variant by first applying some arbitrary class
label assignment that is consistent with the at-least-one semantics. In our ex-
perimental study, we compare against two such static labeling schemes, namely,
NI, which labels all free tuples as positive, and RD, which labels a random non-
empty subset of free tuples in each Pi as positive4. However, such static labeling
schemes do not exploit the flexible class labeling opportunities to optimize the
classification task. To avoid the limitations of the static scheme, TALOS employs
a novel dynamic class labeling scheme to compute optimal node splits for deci-
sion tree construction without having to enumerate an exponential number of
combinations of class labeling schemes for the free tuples.

Example 3. Continuing with Example 2, J1 is partitioned into two subsets: P1 =
{t3, t4} and P2 = {t7}, where P1 and P2 contribute to the outputs “B” and “E”,
respectively. The tuples in J0 and P2 are bound tuples, while the tuples in P1

are free tuples. To derive an IEQ, at least one of the free tuples in P1 must
be labeled positive. If t3 is labeled positive and t4 is labeled negative, DT2 in

4 We also experimented with a scheme that randomly labels only one free tuple for
each subset as positive, but the results are worse than NI and RD.

10

Number of free tuples Exactly-One
to be labeled positive Labeling of free tuples Constraint Propagation

Case f1 f2 positive negative S1 S2

C1
∑m

i=1 ni,1

∑m
i=1 ni,2 S1 ∪ S2 - - -

C2
∑m

i=1 ni,1 T2 S1 SP12-sets in S2 - SP2-sets
C3 T1

∑m
i=1 ni,2 S2 SP12-sets in S1 SP1-sets -

C4 T1 m− T1 - SP12-sets in S1 SP1-sets All subsets
C5 m− T2 T2 - SP12-sets in S2 All subsets SP2-sets

Table 1. Optimizing Node Splits

Figure 2(b) is a simpler decision tree constructed by partitioning J based on a
selection predicate on attribute HR. The IEQ derived from DT2 is Q

′′
4 = πname

σHR>50 (Master ./ Batting). ¤

Performance Issues. The second challenge concerns the performance issue of
how to efficiently generate candidates for rel(Q′) and optimize the computation
of the single input table J required for the classification task. To improve per-
formance, TALOS exploits join indices to avoid a costly explicit computation of
J and constructs mapping tables to optimize decision tree construction.

3 Handling At-Least-One Semantics

In this section, we address the first challenge of TALOS and present a novel
approach for classifying data with the at-least-one semantics.

3.1 Computing Optimal Node Splits

The main challenge for classification with the at-least-one semantics is how to
optimize the node splits given the presence of free tuples which offer flexibility
in the class label assignment. We present a novel approach that computes the
optimal node split without having to explicitly enumerate all possible class label
assignments to the free tuples. The idea is based on exploiting the flexibility
offered by the at-least-one semantics.

Let us consider an initial set of tuples S that has been split into two subsets,
S1 and S2, based on a value v of a numeric attribute A (the same principle
applies to categorical attributes as well); i.e., a tuple t ∈ S belongs to S1 iff
t.A ≤ v. The key question is how to compute the optimal Gini index of this
split without having to enumerate all possible class label assignments for the
free tuples in S such that the at-least-one semantics is satisfied. Without loss of
generality, suppose that the set of free tuples in S is partitioned (as described
in Section 2.3) into m subsets, P1, · · · , Pm, where each |Pi| > 1.

Let ni,j denote the number of tuples in Pi ∩ Sj , and fj denote the number
of free tuples in Sj to be labeled positive to minimize Gini(S1, S2), where i ∈

11

[1,m], j ∈ {1, 2}. We classify Pi, i ∈ [1,m], as a SP1-set (resp. SP2-set) if Pi is
completely contained in S1 (resp. S2); otherwise, Pi is a SP12-set (i.e., ni,1 > 0
and ni,2 > 0).

To satisfy the at-least-one semantics, we need to ensure that at least one free
tuple in each Pi, i ∈ [1,m], is labeled positive. Let Tj , j ∈ {1, 2}, denote the
minimum number of free tuples in Sj that must be labeled positive to ensure
this. Observe that for a specific Pi, i ∈ [1,m], if Pi a SP1-set (resp. SP2-set),
then we must have T1 ≥ 1 (resp. T2 ≥ 1). Thus, Tj is equal to the number of
SPj-sets. More precisely, Tj =

∑m
i=1 max{0, 1− ni,3−j}, j ∈ {1, 2}.

Thus, f1 and f2 must satisfy the following two conditions:

(A1) Tj ≤ fj ≤
∑m

i=1 ni,j , j ∈ {1, 2}; and
(A2) f1 + f2 ≥ m.

Condition (A1) specifies the possible number of free tuples to be labeled positive
for each Sj , while condition (A2) specifies the minimum combined number of
tuples in S to be labeled positive in order that the at-least-one semantics is
satisfied for each Pi.

Based on conditions (A1) and (A2), it can be shown that the optimal value
of Gini(S1, S2) can be determined by considering only five combinations of f1

and f2 values as indicated by the second and third columns in Table 1. The proof
of this result is given in Appendix B. These five cases correspond to different
combinations of whether the number of positive or negative tuples is being max-
imized in each of S1 and S2: case C1 maximizes the number of positive tuples
in both S1 and S2; case C2 maximizes the number of positive tuples in S1 and
maximizes the number of negative tuples in S2; case C3 maximizes the number
of negative tuples in S1 and maximizes the number of positive tuples in S2; and
cases C4 and C5 maximize the number of negative tuples in both S1 and S2.
The optimal value of Gini(S1, S2) is given by the minimum of the Gini index
values derived from the above five cases.

3.2 Updating Labels & Propagating Constraints

Once the optimal Gini(S1, S2) index is determined for a given node split, we need
to update the split of S by converting the free tuples in S1 and S2 to bound
tuples with either positive/negative class labels. The details of this updating
depends on which of the five cases the optimal Gini value was derived from, and
is summarized by the last four columns in Table 1.

For case C1, which is the simplest case, all the free tuples in S1 and S2 will
be converted to positive tuples. However, for the remaining cases, which involve
maximizing the number of negative tuples in S1 or S2, some of the free tuples may
not be converted to bound tuples. Instead, the maximization of negative tuples
in S1 or S2 is achieved by propagating another type of constraints, referred to as
“exactly-one” constraints, to some subsets of tuples in S1 or S2. Similar to the
principle of at-least-one constraints, the idea here is to make use of constraints
to optimize the Gini index values for subsequent node splits without having to

12

explicitly enumerate all possible class label assignments. Thus, in Table 1, the
fourth and fifth columns specify which free tuples are to be converted to bound
tuples with positive and negative labels, respectively; where an ‘-’ entry means
that no free tuples are to be converted to bound tuples. The sixth and seventh
columns specify what subsets of tuples in S1 and S2, respectively, are required
to satisfy the exactly-one constraint; where an ‘-’ entry column means that no
constraints are propagated to S1 or S2.

We now define the exactly-one constraint and explain why it is necessary.
An exactly-one constraint on a set of free tuples S′ requires that exactly one
free tuple in S′ must become labeled as positive with the remaining free tuples
in S′ labeled as negative. Consider case C2, which is to maximize the number
of positive (resp. negative) tuples in S1 (resp. S2). The maximization of the
number of positive tuples in S1 is easy to achieve since by converting all the free
tuples in S1 to positive, the at-least-one constraints on the SP1-sets and SP12-
sets are also satisfied. Consequently, for each SP12-set Pi, all the free tuples in
Pi ∩ S2 can be converted to negative tuples (to maximize the number of negative
tuples in S2) without violating the at-least-one constraint on Pi. However, for
a SP2-set Pi, to maximize the number of negative tuples in Pi while satisfying
the at-least-one semantics translates to an exactly-one constraint on Pi. Thus,
for case C2, an exactly-one constraint is propagated to each SP2-set in S2, and
no constraints are propagated to S1. A similar reasoning applies to cases C3
to C5. Thus, while the at-least-one constraint is applied to each subset of free
tuples Pi in the initial node split, the exactly-one constraint is applied to each
Pi for subsequent node splits. This second variant of the node split problem
can be optimized by techniques similar to what we have explained so far for
the first variant. In particular, the first condition (A1) for f1 and f2 remains
unchanged, but the second condition (A2) becomes f1 + f2 = m. Consequently,
the optimization of the Gini index value becomes simpler and only needs to
consider cases C4 and C5.

Example 4. To illustrate how class labels are updated and how constraints are
propagated during a node split, consider the following query on the baseball
database D: Q5 = πstint (σcountry=“USA” Master./pID Batting). Suppose that
the weak-IEQ Q′5 being considered has rel(Q′5) = {Master, Batting}. Let J =
Master./pID Batting (shown in Figure 2(a)). Since Q5(D) = {1, 2}, we have
J0 = {t6, t7}, P1 = {t1, t2, t5} (corresponding to stint = 2) and P2 = {t3, t4}
(corresponding to stint = 1). The tuples in J0 are labeled negative, while the
tuples in P1 and P2 are all free tuples.

Suppose that the splitting attribute considered is “weight”, and the optimal
splitting value for “weight” is 72. The Gini(S1, S2) values computed (w.r.t.
“weight = 72”) for the five cases, C1 to C5, are 0.29, 0.48, 0.21, 0.4 and 0.4,
respectively. Thus, the optimal value of Gini(S1, S2) is 0.21 (due to case C3). We
then split tuples with weight ≤ 72 (i.e., {t3, t4, t6, t7}) into S1 and tuples with
weight > 72 (i.e., {t1, t2, t5}) into S2. Thus, P1 is a SP2-set while P2 is a SP1-
set. Since the optimal Gini index computed is due to case C3 (i.e., maximizing
negative tuples in S1 and maximizing positive tuples in S2), all the free tuples

13

in S2 (i.e., t1, t2 and t5) are labeled positive, and an exactly-one constraint is
propagated to the set of tuples P2 ∩ S1 (i.e., {t3, t4}). ¤

In summary, TALOS is able to efficiently compute the optimal Gini index value
for each attribute split value considered without enumerating an exponential
number of class label assignments for the free tuples.

4 Optimizing Performance

In this section, we first explain how TALOS adapts a well-known decision tree
classifier for performing data classification in the presence of free tuples where
their class labels are not fixed. We then explain the performance challenges of
deriving Q′ when rel(Q′) involves multiple relations and present optimization
techniques to address these issues. For ease of presentation and without loss of
generality, the discussion here assumes weak IEQs.

val row
A 1
B 2
C 3
D 4
E 5

rM rB rT

1 1 1
2 3 1
2 4 2
3 5 3
4 6 1
5 7 3

rM SrJ
1 {1}
2 {2, 3}
3 {4}
4 {5}
5 {6}

nid cid sid
1 0 0

1 -1 1
1 -1 1

1 0 0
1 0 0
1 1 2

(a) ALname (b) Jhub (c) MMaster (d) CL

Fig. 3. Example data structures for Q4(D)

4.1 Classifying Data in TALOS

We first give an overview of SLIQ [14], a well-known decision tree classifier, that
we have chosen to adapt for TALOS. We then describe the extensions required
by TALOS to handle data classfication in the presence of free tuples. Finally, we
present a non-optimized, naive variant of TALOS. It is important to emphasize
that our approach is orthogonal to the choice of the decision tree technique.

Overview of SLIQ. To optimize the decision tree construction on a set of data
records D, SLIQ uses two key data structures. First, a sorted attribute list,
denoted by ALi, is pre-computed for each attribute Ai in D. Each ALi can be
thought of as a two-column table (val, row), of the same cardinality as D, that is
sorted in non-descending order of val. Each record r = (v, i) in ALi corresponds
to the ith tuple t in D, and v = t.Ai. The sorted attribute lists are used to speed
up the computation of optimal node splits. To determine the optimal node split
w.r.t. Ai requires a single sequential scan of ALi.

Second, a main-memory array called class list, denoted by CL, is maintained
for D. This is a two-column table (nid, cid) with one record per tuple in D. The

14

ith entry in CL, denoted by CL[i], corresponds to the ith tuple t in D, where
CL[i].nid is the identifier of leaf node N , t ∈ DN , and CL[i].cid refers to the
class label of t. CL is used to keep track of the tuples location (i.e., in which leaf
nodes) as leaf nodes are split.

Class List Extension. In order to support data classification with free tuples,
where their class labels are assigned dynamically, we need to extend SLIQ with
the following modification. The class list table CL(nid, cid, sid) is extended with
an additional column “sid”, which represents a subset identifier, to indicate
which subset (i.e., Pi) a tuple belongs to. This additional information is needed
to determine the optimal Gini index values as discussed in the previous section.
Consider a tuple t which is the ith tuple in D. The cid and sid values in CL are
maintained as follows: if t belongs to J0, then CL[i].cid = 0 and CL[i].sid = 0;
if t is a bound tuple in Pj , then CL[i].cid = 1 and CL[i].sid = j; otherwise, if t
is a free tuple in Pj , then CL[i].cid = −1 and CL[i].sid = j.

Example 5. Figure 3 shows some data structures created for computing IEQs for
Q4(D). Figure 3(a) shows the attribute list created for attribute Master.name;
and Figure 3(d) shows the initial class list created for Jhub, where all the records
are in a single leaf node (with nid value of 1). ¤

Naive TALOS. Before presenting the optimizations for TALOS in the next section,
let us first describe a non-optimized, naive variant of TALOS (denoted by TALOS-).
Suppose that we are considering an IEQ Q′ where rel(Q′) = {R1, · · · , Rn},
n > 1, that is derived from some schema subgraph G. First, TALOS- joins all the
relations in rel(Q′) (based on the foreign-key joins represented in G) to obtain
a single relation J . Next, TALOS- computes attribute lists for the attributes in
J and a class list for J . TALOS- is now ready to construct a decision tree DT
to derive the IEQ Q′ with these structures. DT is initialized with a single leaf
node consisting of the records in J , which is then refined iteratively by splitting
the leaf nodes in DT . TALOS- terminates the splitting of a leaf node when (1)
its tuples are either all labeled positive or all labeled negative; or (2) its tuples
have the same attribute values w.r.t. all the splitting attributes. Finally, TALOS-
classifies each leaf node in DT as positive or negative as follows: a leaf node
is classified as positive if and only if (1) all its tuples are labeled positive, or
(2) the ratio of the number of its positive tuples to the number of its negative
tuples is no smaller than a threshold value given by τ . In our experiments, we
set τ = 1. sel(Q′) is then derived from the collection of positive leaf nodes in DT
as follows. Each set of tuples in a positive leaf node is specified by a selection
predicate that is a conjunction of the predicates along the path from the root
node to that leaf node, and the set of tuples in a collection of positive leaf
nodes is specified by a selection predicate that is a disjunction of the selection
predicate for each selected leaf node. In the event that all the leaf nodes in DT
are classified as negative, the computation of Q′ is not successful (i.e., there is
no IEQ for rel(Q′)) and we refer to Q′ as a pruned IEQ.

15

4.2 Optimizations

The naive TALOS described in the previous section suffers from two drawbacks.
First, the overhead of computing J can be high especially if there are many
large relations in rel(Q′). Second, since the cardinality of J can be much larger
than the cardinality of each of the relations in rel(Q′), building decision trees
directly using J entails the computation and scanning of correspondingly large
attribute lists which further increases the computation cost. In the rest of this
section, we present the optimization techniques used by TALOS to address the
above performance issues.

Join Indices & Hub Table. To avoid the overhead of computing J from
rel(Q′), TALOS exploits pre-computed join indices [22] which is a well-known tech-
nique for optimizing joins. For each pair of relations, R and R′, in the database
schema that are related by a foreign-key join, its join index, denoted by IR,R′ ,
is a set of pairs of row identifiers referring to a record in each of R and R′ that
are related by the foreign-key join.

Based on the foreign-key join relationships represented in the schema sub-
graph G, TALOS computes the join of all the appropriate join indices for rel(Q′)
to derive a relation, called the hub table, denoted by Jhub. Computing Jhub is
much more efficient than computing J since there are fewer number of join op-
erations (i.e., number of relevant join indices) and each join attribute is a single
integer-valued column.

Example 6. Consider again query Q4 introduced in Example 2. Suppose that we
are computing IEQ Q′4 with rel(Q′4) = {Master, Batting, Team}. Figure 3(b)
shows the hub table, Jhub, produced by joining two join indices: one for Master
./pID Batting and the other for Batting ./team,year Team. Here, rM , rB , and
rT refer to the row identifiers for Master, Batting, and Team relations, respec-
tively. ¤

Mapping Tables. Instead of computing and operating on large attribute lists
(each with cardinality equal to |J |) as in the naive approach, TALOS operates over
the smaller pre-computed attribute lists ALi for the base relations in rel(Q′)
together with small mapping tables to link the pre-computed attribute lists to
the hub table. In this way, TALOS only needs to pre-compute once the attribute
lists for all the base relations, thereby avoiding the overhead of computing many
large attribute lists for different rel(Q′) considered.

Each mapping table, denoted by Mi, is created for each Ri ∈ rel(Q′) that
links each record r in Ri to the set of records in Jhub that are related to r.
Specifically, for each record r in Ri, there is one record in Mi of the form (j, S),
where j is the row identifier of r, and S is a set of row identifiers representing
the set of records in Jhub that are created from r.

Example 7. Figure 3(c) shows the mapping table MMaster that links the Master
relation in Figure 1 and Jhub in Figure 3(b). The record (2, {2, 3}) in MMaster

indicates that the second tuple in Master relation (with pID of P2), contributed
two tuples, located in the second and third rows, in Jhub. ¤

16

Computing Class List. We now explain how TALOS can efficiently compute
the class list CL for J (without having explicitly computed J) by using the
attribute lists, hub table, and mapping tables. The key task in computing CL
is to partition the records in J into subsets (J0, P1, P2, etc.), as described in
the previous section. For simplicity and without loss of generality, assume that
the schema of Q(D) has n attributes A1, · · · , An, where each Ai is an attribute
of relation Ri. TALOS first initializes CL with one entry for each record in Jhub

with the following default values: nid = 1, cid = 0, and sid = 0. For each record
rk that is accessed by a sequential scan of Q(D), TALOS examines the value vi of
each attribute Ai of rk. For each vi, TALOS first retrieves the set of row identifiers
RIvi

of records in Ri that have a value of vi for attribute Ri.Ai by performing
a binary search on the attribute list for Ri.Ai. With this set of row identifiers
RIvi

, TALOS probes the mapping table Mi to retrieve the set of row identifiers
JIvi of the records in Jhub that are related to the records referenced by RIvi .
The intersection of the JIvi ’s for all the attribute values of rk, denoted by Pk,
represents the set of records in J that can generate rk. TALOS updates the entries
in CL corresponding to the row identifiers in Pk as follows: (1) the sid value of
each entry is set to k (i.e., all the entries belong to the same subset corresponding
to record rk); and (2) the cid value of each entry is set to 1 (i.e., tuple is labeled
positive) if |Pk| = 1; otherwise, it is set to −1 (i.e., it is a free tuple).

Example 8. We illustrate how TALOS creates CL for query Q4, which is shown
in Figure 3(d). Initially, each row in CL is initialized with sid = 0 and cid = 0.
TALOS then access each record of Q4(D) sequentially. For the first record (with
name = “B’), TALOS searches ALname and obtains RIB = {2}. It then probes
MMaster with the row identifer in RIB and obtains JIB = {2, 3}. Since Q4(D)
contains only one attribute, we have P1 = {2, 3}. The second and the third
rows in CL are then updated with sid = 1 and cid = −1. Similarly, for the
second record in Q4(D) (with name = “E”), TALOS searches ALname and obtains
RIE = {5}, and derives JIE = {6} and P2 = {6}. The sixth row in CL is then
updated with sid = 2 and cid = 1. ¤

5 Ranking IEQs

In this section, we describe the ranking criteria we adopt to prioritize results
presented to the user. Specifically, we consider a metric based on the Mini-
mum Description Length (MDL) principle [19], and two metrics based on the
F-measure [23].

Minimum Description Length (MDL). The MDL principle argues that all
else being equal, the best model is the one that minimizes the sum of the cost of
describing the data given the model and the cost of describing the model itself.
If M is a model that encodes the data D, then the total cost of the encoding,
cost(M, D), is defined as: cost(M, D) = cost(D|M)+cost(M), where cost(M) is
the cost to encode the model (i.e., the decision tree in our case) and cost(D|M)
is the cost to encode the data given the model. We can rely on succinct tree-
based representations to compute cost(M). The data encoding cost, cost(D|M),

17

is calculated as the sum of classification errors. The details of the encoding
computations are given elsewhere [14].

F-measure. We now present two useful metrics based on the popular F-measure.
The first variant follows the standard definition of F-measure: the F-measure for
two IEQs Q and Q′ is defined as Fm = 2×|pa|

2×|pa|+|pb|+|pc| , where pa = Q(D)∩Q′(D),
pb = Q′(D)−Q(D), and pc = Q(D)−Q′(D). We denote this variant as F-measure
in our experimental study.

The details to calculate the first variant of F-measure are as follows. Recall
that after the tree construction step, all tuples have the explicit class labels.
The main idea to determine pa, pb and pc is to firstly find out the query output
Q′(D) of Q′ and then sort merge join with Q(D) to determine pa, pb and pc.
To create the query output Q′(D) TALOS needs to scan the attribute lists of
attributes in the query. Let us consider the scenarios when Q′(D) contains m
attribute A1, · · · , Am from m relations R1, · · · , Rm respectively5. First, TALOS
creates a m attributes table QP (A1, · · · , Am). The cardinality of QP is equal
to the number of rows in CL that have class label positive. TALOS scans each
attribute list ALAi , for each record (val, row), it probes row to find a set of
position Pi. Then, for each value p ∈ Pi, TALOS update QP correspondingly by
QP [p].Ai = val.

After scanning all attribute lists ALAi
, we obtain table QP which is the

query output Q′(D). The next step is easily done by joining Q′(D) with Q(D)
to calculate pa, pb and pc respectively.

Observe that the first variant is useful only for approximate IEQs, and is not
able to distinguish among precise IEQs as this metric gives identical values for
precise IEQs since pb and pc are empty. To rank precise IEQs, we introduce a
second variant, denoted by F est

m , which relies on estimating pa, pb, and pc using
existing data probabilistic models (as opposed to using the actual values from the
data set). F est

m captures how the equivalence of queries is affected by database
updates, and the IEQ with high F est

m is preferable to another IEQ with low
F est

m . For simplicity, we use a simple independent model to estimate F est
m ; other

techniques such as the Bayesian model by Getoor and others [8] can be applied
too. The second variant has the benefit that estimates which are computed from
a global distribution model may more accurately reflect the true relevance of the
IEQs than one computed directly from the data. This of course pre-supposes
that future updates follow the existing data distribution.

The detail to compute F est
m is as follows. For output query Q′, we maintain

two set of rules: S′p to contain all rules that are labeled positive and S′n to contain
all rules that are labeled negative. To create S′p and S′n, TALOS visits each leaf
node N in decision tree T ′ of Q′. For every leaf node N that is labeled positive,
the selection condition of attributes along this path from root to this node is
converted into a rule rp, then rp is put into S′p. In contrast, if N is labeled
negative, the rule derived from the root to this node is inserted into S′n. TALOS
uses the same process to derive the two sets of rule Sp and Sr for input query

5 Relation Ri is not necessarily different from relation Rj (i 6= j).

18

Q where Sp (resp. Sr) has the same meaning with S′p (resp. S′r). Our main task
is to estimate when a new tuple (or set of tuples) is inserted into the database,
whether tuple(s) satisfy both Q and Q′. Recall that pa represents the set of
tuples that satisfy both Q and Q′. Then, |pa| could be estimated by counting
the number of tuples that satisfy one rule in Sp and another rule in S′p. In other
words, |pa| is estimated by

|pa| =
∑

∀ri∈Sp ,∀rj∈S′p

sel(ri ∧ rj), (1)

where sel(ri ∧ rj) denotes the selectivity of a “virtual” query Q = ri ∧ rj .
Similarly, pb represents set of tuples that satisfy Q but do not satisfy Q′

whereas pc represents set of tuples that satisfy Q′ but do not satisfy Q. Then,
pb and pc are estimated in the similar manner with pa as follows.

|pb| =
∑

∀ri∈Sp ,∀rj∈S′n

sel(ri ∧ rj) (2)

|pc| =
∑

∀ri∈Sn ,∀rj∈S′p

sel(ri ∧ rj) (3)

We can easily see that the main component in (1),(2),(3) is the selectivity
of virtual queries which are created from the corresponding rules in Sp, S′p,
Sn and S′n. Our task now turns into estimate the selectivity of these queries.
This is a well-know problem that has been solved by many techniques. In our
approach, we have adopted the model with the independent assumption about
predicate in the query. More specifically, let assume Q = C1 ∧ · · · ∧ Ck then
sel(Q) = sel(C1) × · · · × sel(Ck) where sel(Ci) is the selectivity of each term
Ci.

6 Experimental Study

In this section, we evaluate the performance of the proposed approaches for
computing IEQs and study the relevance of the results returned. The algorithms
being compared include our proposed TALOS approach, which is based on a dy-
namic assignment of class labels for free tuples, and two static class labeling
techniques: NI labels all the free tuples as positive, and RD labels a random
number of at least one free tuple in each subset as positive. We also examined
the effectiveness of our proposed optimizations by comparing against a non-
optimized naive variant of TALOS (denoted by TALOS-) described in Section 4.1.

The database system used for the experiments is MySQL Server 5.0.51; and
all algorithms are coded using C++ and compiled and optimized with gcc. Our
experiments are conducted on dual core 2.33GHz machine with 3.25GB RAM,
running Linux. The experimental result timings reported are averaged over 5
runs with caching effects removed.

19

6.1 Data sets & Queries

We use three real data sets: one small size (Adult), one medium size (Baseball)
and one large data set (TPC-H). All the test queries are given in Table 2, where
sf refers to the selectivity factor of a query.

Adult. The Adult data set, from the UCI Machine Learning Repository6, is a
single-relation data set that has been used in many classification works. We use
this data set to illustrate the utility of the IEQs for the simple case when both
the input query Q as well as the output IEQ Q′ involve only one relation. The
four test queries for this data set are A1, A2, A3 and A4

7. The first three queries
have different selectivities: low (A1), medium (A2) and very high (A3). Query
A4 is used to illustrate how TALOS handles skyline queries [4].

In addition, we also run three sets of workload queries with varying selectiv-
ities (low, medium, high) shown in Table 3. Each workload set Wi consists of
five queries denoted by Wi1 to Wi5. The average selectivity factor of the queries
in W1, W2, and W3 are, respectively, 0.85, 0.43, and 0.05.

Query sf
A1 πnc (σocc=“Armed-Force” adult) 0.91
A2 πedu (σms=“Married-AF”∧race=“Asian” adult) 0.17
A3 πedu,occ (σms=“Never-married”∧64≤age≤68

σrace=“White”∧gain>500∧sex=“F” adult)
0.06

A4 πid (σSKY -LINE(gain MAX,age MIN) adult) 0.06
B1 πname(σteam=“ARI”∧year=2006∧HR>10

(Master ./ Batting))
0.0004

B2 πname(σsum(HR)>600) (Master ./ Batting) 0.001
B3 πname (σSKY -LINE(HR MAX,SO MIN)

(Master ./ Batting))
0.002

B4 πname,year,rank (σteam=“CIN”∧1982<year<1988
(Manager ./ Team))

0.0004

T1 πmfgr(σbrand=“Brand#32”(part)) 0.2
T2 πname(σprice>500,000∧priority=“Urgent”

(customer ./ order))
0.0004

Table 2. Test queries for experiments

Baseball. The baseball data set is a more complex, multi-relation database that
contains Batting, Pitching, and Fielding statistics for Major League Baseball
from 1871 through 2006 created by Sean Lahman. There are 16, 639 records of
baseball players, 88, 686 records in Batting, 37, 598 records in Pitching, 128, 426
records Fielding and other auxiliary relations (AwardsPlayer, Allstar, Team,
Managers, etc.). The queries used for this data set (B1, B2, B3, B4) are common
queries that mainly relate to baseball players’ performance.

TPC-H. To evaluate the scalability of our approach, we use the TPC-H data
set (with a scaling factor of 1) and two test queries, T1 and T2.
6 http://archive.ics.uci.edu/ml/datasets/Adult
7 We use gain, ms, edu, loss, nc, hpw, and rs, respectively, as abbreviations for

capital-gain, marital-status, education, capital-loss, native-country, hours-per-week,
and relationship.

20

Query sf
W11πms (σ19≤age≤22∧edu=“Bachelors” adult) 0.79
W12πnc (σocc=“Armed-Force” adult) 0.91
W13πocc,ms (σnc=“Phillipines”∧30≤age≤40 adult) 0.83
W14πedu,age (σwc=“Private”∧race=“Asian” adult) 0.82
W15πocc,edu (σgain>9999 adult) 0.89
W21πedu (σ23≤age≤24∧nc=“Germany” adult) 0.53
W22πage,wc,edu (σhpw≤19∧race=“White” adult) 0.64
W23πedu,age,ms (σwc=“Private”∧race=“Asian” adult) 0.61
W24πedu,age (σms=“Separated”∧wc=“State-gov”

σrace=“White” adult)
0.2

W25πedu (σms=“Married-AF”∧race=“Asian” adult) 0.17
W31πage (σms=“Divorced”∧wc=“State”∧age>70 adult) 0.002
W32πocc,edu (σms=“NM”∧64≤age≤68∧race=“White”

σgain>2000∧sex=“F” adult)
0.06

W33πage,wc,edu (σhpw≤19∧race=“White”∧nc=“England”
adult)

0.01

W34πedu,age,gain (σms=“Married-civ”∧race“Asian”
σ30≤age≤37 adult)

0.17

W35πedu,gain (σgain>5000∧nc=“Vietnam” adult) 0.0008

Table 3. Workload query sets (W1, W2, W3) for Adult

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

A1 A2 A3

NI
RD
TALOS

 0

 10

 20

 30

 40

 50

 60

 70

 80

A1 A2 A3

T
im

e
(i

n
se

c)

(a) (b)

NI
RD
TALOS

 0

 5,000

 10,000

 15,000

 20,000

 25,000

A1 A2 A3

M
D

L

NI
RD
TALOS

 0

 0.2

 0.4

 0.6

 0.8

 1

A1 A2 A3

F
−

m
ea

su
re

(c) (d)

Fig. 4. Comparison of TALOS, NI and RD. (a) Number of IEQs (b) Running time (c)
MDL metric (d) F-measure metric

21

NI
RD
TALOS

 0

 50

 100

 150

 200

 250

 300

 350

low−selectivity medium−selectivity high−selectivity

T
im

e
(in

 s
ec

)

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

W11 W12 W13 W14 W15

(a) (b)

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

W21 W22 W23 W24 W25

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

W31 W32 W33 W34 W35

(c) (d)

Fig. 5. Comparison of TALOS, NI and RD for workload queries. (a) Running time (b)
Number of IEQs for W1 (c) Number of IEQs for W2 (d) Number of IEQs for W3

6.2 Comparing TALOS, NI, and RD

In this section, we compare TALOS against the two static class-labeling schemes,
NI and RD, in terms of their efficiency as well as the quality of the generated
IEQs.

Figures 4(a) and (b) compare the performance of the three algorithms in
terms of the number of weak IEQs generated and their running times, respec-
tively, using the queries A1 to A4. Note that Figure 4 only compares the perfor-
mance for weak IEQs because as the Adult data set is a single-relation database,
all the tuples are necessarily bound when computing strong IEQs. Thus, the
performance results for strong IEQs are the same for all algorithms and are
therefore omitted. Similarly, the results for query A4 are also omitted from the
graphs because it happens that all the tuples are bound for query A4; hence, the
performance results are again the same for all three algorithms.

The results in Figures 4(a) and (b) clearly show that TALOS outperforms NI
and RD in terms of both the total number of (precise and approximate) IEQs
computed8 as well as the running time. In particular, observe that the number
of precise IEQs from TALOS is consistently larger than that from NI and RD.
This is due to the flexibility of TALOS’s dynamic assignment of class labels for
free tuples which increase its opportunities to derive precise IEQs. In contrast,

8 For clarity, we have also indicated in Figure 4(a) the number of pruned IEQs (defined
in Section 4.1) computed by each algorithm. Since the number of decision trees
considered by all three algorithms are the same, the sum of the number of precise,
approximate, and pruned IEQs generated by all the algorithms are the same.

22

the static class label assignment schemes of NI and RD are too restrictive and
are not effective for generating precise IEQs.

In addition, TALOS is also more efficient than NI and RD in terms of the
running time. The reason for this is due to the flexibility of TALOS’s dynamic
labeling scheme for free tuples which results in decision trees that are smaller
than those constructed by NI and RD. Table 4 compares the decision trees
constructed by TALOS, NI, and RD in terms of their average height and average
size (i.e., number of nodes). Observe that the decision trees constructed by TALOS
are significantly more compact than that by NI and RD.

Average height Average size
Query NI RD TALOS NI RD TALOS

A1 14.9 19.8 2.1 5304 9360 4.7
A2 13.4 20.1 3.2 4769 4966 6.9
A3 16.1 21.8 6.5 3224 2970 19.2

Table 4. Comparison of decision trees for NI, RD, and TALOS

Figures 4(c) and (d) compare the quality of the IEQs generated by the three
algorithms using the MDL and F-measure metrics, respectively. The results show
that TALOS produces much better quality IEQs than both NI and RD: while the
average value of the MDL metric for TALOS is extremely low (under 60), the
corresponding values of both NI and RD are in the range of [4000, 22000]. For
the F-measure metric, the average value for TALOS is nearly 1 (larger than 0.8),
whereas the values for NI and RD are only around 0.3 and 0.4, respectively.

Figure 5 compares the three algorithms for the three sets of workload queries,
W1, W2, and W3, on the Adult data set. As the results in Figure 5(a) show,
TALOS again outperforms both NI and RD in terms of running time. For both
low and medium selectivity query workload (i.e., W1 and W2), the results in
Figures 5(b) and (c) show TALOS is able to find many more precise IEQs for
all queries compared to NI and RD. The reason for this is because such queries
have a larger number of free tuples which gives TALOS more flexibility to derive
precise IEQs. Figure 5(d) shows the comparison for the high selectivity query
workload (i.e., W3). As the number of free tuples is smaller for highly selective
queries, the flexibility for TALOS becomes reduced, but TALOS still obtains about
1.5 to 9 times larger number of precise IEQs compared to NI and RD.

Our comparison results for the Baseball data set (not shown) also demon-
strate similar trends with TALOS outperforming NI and RD in both the running
time as well as the number and quality of IEQs generated.

6.3 Effectiveness of Optimizations

Figure 6 examines the effectiveness of the optimizations by comparing the run-
ning times of TALOS and TALOS- on both the Baseball and TPC-H data sets.
Note that the number and quality of IEQs produced by TALOS and TALOS- are

23

the same as these qualities are independent of the optimizations. The results
show that TALOS is about 2 times faster than TALOS-. The reason is that the
attribute lists accessed by TALOS, which correspond to the base relations, are
much smaller than the attribute lists accessed by TALOS-, which are based one
J . For example, for query T1, the attribute list constructed by TALOS- for at-
tribute “container” in part relation is 4 times larger than that constructed by
TALOS; and for query T2, the attribute list constructed by TALOS- for attribute
“acctbal” in customer relation is 10 times larger than that constructed by TALOS.
In addition, the computation of Jhub by TALOS using join indices is also more
efficient than the computation of J by TALOS-.

For the queries B1, B2, and B3 on the Baseball data set, the number of IEQs
(both precise and approximate) generated by TALOS is in the range [50, 80] with
an average running time of about 80 seconds. Thus, it takes TALOS about 1.2
seconds to generate one IEQ which is reasonable. Note that the comparison for
query B4 is omitted because while TALOS takes only 37.6 seconds to complete,
the running time by TALOS- exceeds 15 minutes.

For the queries T1 and T2 on the TPC-H data set, TALOS takes 34.34 seconds
to compute six precise IEQs for T1, and takes 200 seconds to compute one precise
and one approximate IEQs. T2 is more costly to evaluate than T1 because the
decision trees constructed for T2 are larger and more complex: the average height
and size of the decision trees for T2 are, respectively, 2 and 4 times, larger than
those for T1. Overall, even for the large TPC-H data set, the running time for
TALOS is still reasonable.

TALOS
TALOS−

 0

 50

 100

 150

 200

 250

 300

B1 B2 B3

T
im

e
(in

 s
ec

)

Fig. 6. Comparison of TALOS and TALOS-

6.4 Strong and Weak IEQs

In this section, we discuss some of the IEQs generated by TALOS for the various
queries. The sample of weak and strong IEQs generated from Adult data set
are shown in Tables 5 and 6, respectively. Tables 7 show sample weak IEQs

24

generated from Baseball and TPC-H data sets, respectively9. For each IEQ, we
also show its value for the F-measure or F est

m metric; the latter is used only in
Table 5 as all the IEQs shown in this table are precise. In Tables 6 and 7, the
F-measure metric values are shown in terms of their |pa|, |pb| and |pc| values; a
IEQ is precise iff |pb| = 0 and |pc| = 0. We use Xi,j to denote an IEQ for a query
Xi, X ∈ {A,B, T}.

Q IEQ F est
m

A1,1 σgain>7298∧ms=“Married-AF” (adult) 0.63
A1,2 σedu=“Preschool”∧race=“Eskimo” (adult) 0.25
A1,3 σloss>3770 (adult) 0.24
A2,1 σloss>3683∧edu num>10 (adult) 0.07
A2,2 σage≤24∧nc=“Hungary” (adult) 0.06
A3,1 σp1∨p2 (adult) 0.004

p1 = (age ≤ 85 ∧ hpw ≤ 1 ∧ edu > 13)
p2 = (age > 85 ∧ edu = “Master” ∧ hpw ≤
40)

Table 5. Weak IEQs on Adult

Adult. In query A1, we want to know the native country of people whose occu-
pation is in the Armed Force. The query result is “U.S”. From the weak IEQs,
we learn that the people who is married to some one in the Armed Force and
have high capital gain (A1,1) have the same native country “U.S”; or people with
high capital loss (> 3770) also have “U.S” as their native country (A1,3).

In query A2, we want to know the education level of Asians who have a
spouse working in the Air Force. The result shows that they all have bachelor
degrees. From the weak IEQs, we know that Hungarians who are younger than
25 also have the same education level (A2,2). For the strong IEQs, we have some
interesting characterizations: A2,3 shows that these Asians are from Philippines,
while A2,4 shows that these Asians are wives whose age are at most 30 and work
more than 52 hours per week. Such alternative queries provide more insights
about query A2 on the Adult data set.

In query A3, we want to find the occupation and education of white females
who are never married with age in the range [64, 68], and have capital gain > 500.
The query result has 5 records. The strong IEQ A3,2 provides more insights about
this group of people: those in the age range [64, 66] are highly educated, whereas
the others in the age range [67, 68] have high capital gains.

Query A4 is a skyline query looking for people with maximal capital gain
and minimal age. The query result includes four people. Both strong and weak
IEQs return the same IEQs for this query. Interestingly, the precise IEQ A4,1

provides a simplification of A4: the people selected by this skyline query are (1)
very young (age ≤ 17) and have capital gain in the range 1055 − 27828, or (2)
have very high capital gain (> 27828), work in the protective service, and whose
race is classified as “others”.
9 The weak IEQs shown in Table 7 actually turn out to be strong IEQs as well for the

queries B1 to B4.

25

Q IEQ |pa||pb||pc|
A1,4 σp1 (adult) 1 1 13

p1 = (48 < hpw ≤ 50 ∧ race 6=
“Eskimo”,“Asian” ∧ 6849 < gain ≤ 7298 ∧
loss ≤ 0 ∧ edu num > 14)

A2,3 σms=“Married-AF”∧nc=“Philippines” (adult) 1 0 0
A2,4 σrace=“Asian”∧rs=“Wife”∧hpw>52∧age≤30

(adult)
1 0 0

A3,2 σp1∨p2 (adult) 5 0 0
p1 = (63 < age ≤ 66 ∧ edu > 15 ∧ ms =
“NM”)
p2 = (66 < age ≤ 68∧ms = “NM”∧ gain >
2993)

A4,1 σp1∨p2 (adult) 4 0 0
p1 = (1055 < gain ≤ 27828 ∧ age ≤ 17)
p2 = (gain > 27828 ∧ occ = P ∧ race 6= O)

Table 6. Strong IEQs on Adult

Baseball. In query B1, we want to find all players who belong to team “ARI”
in 2006 and have a high performance (HR > 10). The result includes 7 players.
From the IEQ B1,1, we know more information about these players’ performance
(G, RBI, etc.), and their personal information (e.g., birth year). In addition,
from IEQ B1,2, we also know that one player in this group got an award when
he played in “NL” league.

In query B2, we want to find the set of high performance players who have
very high total home runs (> 600). There are four players with these charac-
teristics. The IEQ B2,1 indicates that some of these players play for “ATL” or
“NY1” team. The IEQ B2,2 indicates one player in this group is highly paid and
has a left throwing hand.

Query B3 is a skyline query that looks for players with maximal number
of home runs (HR) and minimal number of strike outs (SO). The result has
35 players. The IEQs provide different characterizations of these players. Query
B3,1 indicates that two players in this group are also the managers of “WS2”
and “NYA” teams; while query B3,2 indicates that two players in this group are
averagely paid.

Query B4 is an interesting query that involves multiple core relations. This
query asks for the managers of team “CIN” from 1983 to 1988, the year they
managed the team as well as the rank that the team gained. There are 3 managers
in the result. In this query, we note that TALOS found alternative join-paths to
link the two core relations, Manager and Team. The first alternative join-path
(shown by B4,1) involves Manager, Master, Batting, and Team. The second
alternative join-path (not shown) involves Manager, Master, Fielding, and Team.
The IEQ B4,1 reveals the interesting observation that there is one manger who
is also a player in the same year that he managed the team with some additional
information about this manager-player.

TPC-H. Query T1 retrieves the manufacturers who supply products of brand
“brand#32”. The result includes one manufacturer “Manufacturer#1”. The IEQ
T1,1 indicates that this manufacturer also supplies some parts at a high price,
where their available quantity is in the range [332, 1527]. The IEQ T1,2 indicates

26

Q IEQ |pa||pb||pc|
B1,1 σp1∨p2 (Master ./ Batting) 7 0 0

p1 = (team = “ARI” ∧ G ≤ 156 ∧ 70 <
RBI ≤ 79 ∧ year > 1975)
p2 = (team = “ARI” ∧G > 156 ∧BB ≤ 78)

B1,2 σlg=“NL”∧year=12∧71<height≤72∧nc 6=“D.R”
(Master ./ AwardsP layer)

1 0 6

B2,1 σp1∨p2 (Master ./ Batting) 4 0 0
p1 = (BB ≤ 162 ∧ HR > 46 ∧ team ∈
{“ATL”, “NY1”} ∧ RBI ≤ 127)
p2 = (BB > 162)

B2,2 σsalary>21680700∧throws=“L” (Master ./
Salaries)

1 0 3

B3,1 σ(team=“WS2”∧R≤4)∨(team=“NYA”∧state=“LA”)
(Master ./ Manager)

2 0 33

B3,2 σp1∨p2) (Master ./ Salaries) 2 0 33
p1 = (height ≤ 78 ∧ weight > 229 ∧
country = “DR” ∧ 180000 < salary <
195000)
p2 = (height > 78 ∧ state = “GA” ∧
salary < 302500)

B4,1 σ21<L≤22∧SB≤0∧67<W≤70 (Mananger ./
Master ./ Batting ./ Team)

1 0 5

T1,1 σprice>2096.99∧331<avaiqty≤1527 (part) 1 0 0
T1,2 σavaiqty≤1∧container=“SM bag” (part ./

part supp)
1 0 0

Table 7. Weak IEQs on Baseball and TPCH

that this manufacturer also supplies others products in the container named “SM
bag” with an available quantity of at most one.

7 Related Work

Although the title of our paper is inspired by Zloof’s influential work on Query
by Example (QBE) [27], the problem addressed by QBE, which is on providing a
more intuitive form-based interface for database querying, is completely different
from QBO.

There are several recent work [2, 3, 5, 15] that share the same broad principle
of “reverse query processing” as QBO but differ totally in the problem objectives
and techniques. Binnig et al. [2, 3] addressed the problem of generating test
databases: given a query Q and a desired result R, generate a database D such
that Q(D) = R. Bruno et al. [5] and Mishra et al. [15] examined the problem
of generating test queries to meet certain cardinality constraints: given a query
Q, a database D, and a set of target cardinality constraints on intermediate
subexpression in Q’s evaluation plan, modify Q to generate a new query Q′ such
that the evaluation plan of Q′ on D satisfies the cardinality constraints.

An area that is related and complementary to QBO is intensional query an-
swering (IQA) or cooperative answering, where for a given Q, the goal of IQA
is to augment the query’s answer Q(D) with additional “intensional” informa-
tion in the form of a semantically equivalent query10 that is derived from the
10 Two queries Q and Q′ are semantically equivalent if for every valid database D,

Q(D) ≡ Q′(D).

27

database integrity constraints [7, 16]. While semantic equivalence is stronger than
instance equivalence and can be computed in a data-independent manner using
only integrity constraints (ICs), there are several advantages of adopting instance
equivalence for QBO. First, in practice, many data semantics are not explicitly
captured using ICs in the database for various reasons [9]; hence, the effective-
ness of IQA could be limited for QBO. Second, even when the ICs in the database
are complete, it can be very difficult to derive semantically equivalent queries
for complex queries (e.g., skyline queries that select dominant objects). By being
data-specific, IEQs can often provide insightful and surprising characterizations
of the input query and its result. Third, as IQA requires the input query Q
to be known, IQA therefore cannot be applied to QBO applications where only
Q(D) (but not Q) is available. Thus, we view IQA and our proposed data-driven
approach to compute IEQs as complementary techniques for QBO.

More recently, an interesting direction of using Précis queries [13, 20] has
been proposed. The idea is to augment a user’s query result with other related
information (e.g., relevant tuples from other relations) and also allow the re-
sults to be personalized based on user-specified or domain requirements. The
objectives of this work is orthogonal to QBO; and as in IQA, it is a query-driven
approach that requires the input query to be known.

In the data mining literature, a somewhat related problem to ours is the
problem of redescription mining introduced by Ramakrishnan [18]. The goal
in redescription mining is to find different subsets of data that afford multi-
ple descriptions across multiple vocabularies covering the same data set. At an
abstract level, our work is different from these methods in several ways. First,
we are concerned with a fixed subset of the data (the output of the query).
Second, none of the approaches for redescription mining account for structural
(relational) information in the data (something we explicitly address). Third,
redescription mining as it was originally posited requires multiple independent
vocabulary descriptions to be identified. We do not have this requirement as we
are simply interested in alternative query formulations within an SQL context.
Finally, the notion of “at-least-one” semantics described in our work is some-
thing redescription mining is not concerned with as it is an artifact of the SQL
context of our work.

8 Conclusion

In this work, we have introduced a new data-driven approach called query by
output (QBO) targeted at improving the usability of database management sys-
tems. The goal of QBO is to discover instance-equivalent queries. Such queries can
shed light on hidden relationships within the data, provide useful information
on the relational schema as well as potentially summarize the original query.

We have developed an efficient system called TALOS for QBO, and our experi-
mental results on several real database workloads of varying complexity highlight
the benefits of our approach.

28

Although our discussions focus primarily on QBO where Q is known (to iden-
tify core relations), extending to the case without Q is feasible too: it requires an
additional preprocessing phase to map each column of Q(D) to a set of relation
attributes by comparing the column contents. In addition, our approach also
could be adapted to handle duplicates in Q(D) by using the at-least-k semantics
instead of at-least-one semantics.

As part of our future work, we plan to explore a hybrid approach that includes
an off-line phase to mine for soft constraints in the database and an online phase
that exploits both the database contents as well as mined constraints. Another
interesting direction to be explored is to increase the expressiveness of IEQs
(e.g., SPJ + union queries).

References

1. P. Andritsos, R. J. Miller, and P. Tsaparas. Information-theoretic tools for mining
database structure from large data sets. In SIGMOD, pages 731–742, 2004.

2. C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In ICDE, pages
506–515, 2007.

3. C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen: generating query-aware
test databases. In SIGMOD, pages 341–352, 2007.

4. S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages
421–430, 2001.

5. N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries with cardinality
constraints for dbms testing. IEEE TKDE, 18(12):1721–1725, 2006.

6. P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren. Curated databases. In
PODS, pages 1–12, 2008.

7. T. Gaasterl, P. Godfrey, and J. Minker. An overview of cooperative answering.
Journal of Intelligent Information Systems, (2):123–157, 1992.

8. L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic
models. In SIGMOD, pages 461–472, 2001.

9. P. Godfrey, J. Gryz, and C. Zuzarte. Exploiting constraint-like data characteriza-
tions in query optimization. In SIGMOD, pages 582–592, 2001.

10. H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and
C. Yu. Making database systems usable. In SIGMOD, pages 13–24, 2007.

11. T. Johnson, A. Marathe, and T. Dasu. Database exploration and bellman.
26(3):34–39, 2003.

12. V. Kabanets and J. yi Cai. Circuit minimization problem. In ACM Symposium on
Theory of Computing (STOC), 2000.

13. G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The essence of a query answer.
In ICDE, page 69, 2006.

14. M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data
mining. In EDBT, pages 18–32, 1996.

15. C. Mishra, N. Koudas, and C. Zuzarte. Generating targeted queries for database
testing. In SIGMOD, pages 499–510, 2008.

16. A. Motro. Intensional answers to database queries. IEEE TKDE, 6(3):444–454,
1994.

17. M. P.N. Tan and V.Kumar. Introduction to Data Mining. Addison-Wesley, 2006.

29

18. N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F. Helm. Turning
cartwheels: An alternating algorithm for mining redescriptions. In KDD, pages
266–275, 2004.

19. J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.
20. A. Simitsis, G. Koutrika, and Y. E. Ioannidis. Generalized précis queries for logical

database subset creation. In ICDE, pages 1382–1386, 2007.
21. G. B. Thomas and R. L. Finney. Calculus and Analytic Geometry. Addison-Wesley,

1991.
22. P. Valduriez. Join indices. ACM Trans. Database Syst., 12(2):218–246, 1987.
23. C. J. van Rijsbergen. Information Retireval. Butterworth, 1979.
24. W. Wu, B. Reinwald, Y. Sismanis, and R. Manjrekar. Discovering topical structures

of databases. In SIGMOD, pages 1019–1030, 2008.
25. X. Xiao and Y. Tao. Output perturbation with query relaxation. Proc. VLDB

Endow., 1(1):857–869, 2008.
26. K. Yang. Integer circuit evaluation is pspace-complete. In Journal of Computer

and System Sciences, 2001.
27. M. M. Zloof. Query by example. In AFIPS NCC, pages 431–438, 1975.

A Proving the hardness of the variants of QBO problem

In this discussion, we use X <P Y to denote that the problem X could be
reduced to the problem Y in polynomial time. For expository simplicity, let us
formally recall the definition of Minimization Circuit Size Problem (MCSP) and
Integer Circuit Evaluation (ICE) before proving our theorems.

Definition 1 (MCSP). Given a truth table of a Boolean function fn and a
natural number sn. The question is whether fn is computable by a Boolean circuit
of size at most sn.

MCSP is reduced to QBOS in proving Theorem 1. One truth table example
(Tn) of MCSP is given in Figure 7(a). In this truth table, we have three gates
corresponding to x1, x2 and x3 variable. The values of function f(x1, x2, x3)
are given in the fourth attribute (f) values. One possible minimization circuit
corresponding to this truth table is f = x1 ∧ x3.

x1 x2 x3 f
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

A1 A2 A3
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(a) (b)

Fig. 7. Converting MCSP to QBOS (a) The truth table Tn(b), The corresponding
relation R in database D

30

Definition 2 (ICE). An integer circuit (IC) takes singleton sets, each contain-
ing one integer, as input and has three types of set operations as gates: the union
gate, A

⋃
B; the pair-wise multiplication gate, A

⊗
B = {a · b|a ∈ A, b ∈ B};

and the pair-wise addition gate, A
⊕

B = {a + b|a ∈ A, b ∈ B}. ICE is given an
integer X, a circuit, and its inputs to determine whether or not X is contained
in the set output by the circuit.

ICE is reduced to QBOG in proving Theorem 3. One integer circuit example
is given in Figure 8. The circuit C receives 5 inputs A1 to A5. It calculates
U12 = A1

⋃
A2, M34 = A3

⊗
A4, P345 = M34

⊗
A5 and finally calculates the

output M12345 = U12

⊗
P345. Given one instance of ICE (C, A1 = {1}, A2 =

{2}, A3 = {3}, A4 = {5}, A5 = {6}, X = 21 then ICE returns yes because
X belongs to the output of the circuit with that set of inputs. In contrast, if
X 6= 21 ∧X 6= 42 (i.e, X is not in the output of C) then ICE will return no.

1 2 3 5 6

U X

+

X

{ 1, 2 } { 15 }

{ 21 }

{ 21, 42 }

U: Union

X: times

+: plus

A1 A2 A3 A4 A5

Fig. 8. An integer circuit

Theorem 1. Given an input query Q, we define QBOS to be the problem to find
the output query Q′ where Q′ is a conjunctive query that involves only projection
and selection (with predicates in the form “Ai op c”, Ai is an attribute, c is
constant and op ∈ {<,≤,=, 6=, >,≥}) such that (1): Q′(D) ≡ Q(D) and (2)
the number of operators (AND, OR and NOT) used in the selection condition is
minimized. Then QBOS is unlikely to be in P .

Proof. Let us first consider the decision form QBODS of QBOS . Informally,
QBODS is similar to QBOS except that we require the number of operators in
the selection clause of Q′ (denoted by s(sel(Q′))) is at most k instead of mini-
mizing s(sel(Q′)) where k is a user defined parameter. It is easy to reduce from
the decision problem (QBODS) to the search form (QBOS). We then reduce the
Minimization Circuit Size Problem to the decision problem QBODS as follows.

31

Given a truth table Tn of a Boolean function fn which includes n binary
variables x1, · · · , xn; we create a database D which contains only one relation
R(A1, · · · , An). Relation R has n attributes where each attribute Ai corresponds
to the variable xi. The variable xi is called the mapping variable of attribute Ai.
Similarly, that attribute Ai is called the mapping attribute of variable xi. All of
these attributes are binary (i.e.; the domain contains only two values 0 or 1).
Every row in the truth table Tn is inserted into R in exactly the same order.
This process is executed in polynomial times (i.e. O(N) where N is the number
of rows in Tn). We then give a query:

Q = πA1,··· ,An
(σC(R)) (4)

The selection condition clause C is given by C = Ci1 ∨ Ci2 · · · ∨ Cik
where

each Ci corresponds to the ith row in the truth table with fn = 1.

Example 9. The truth table Tn given in Figure 7(a) is converted into the corre-
sponding relation R in database D as shown in Figure 7(b). The user query in this
case is Q = πA1,A2,A3(σC1∨C2(R)), where C1 = A1∧¬A2∧A3, C1 = A1∧A2∧A3.

Assume that QBODS finds other queries Q′ that contain only selection and
projection clause such that Q′(D) = Q(D) and the size of selection clause of
Q′ is at most sn. Because D has only one relation R then the query Q′ must
involve R. In addition, the projected attributes will also among attributes Ai.
The selection condition of Q′ will only consist of AND, OR and NOT operators
(according its definition).

We convert the selection clause of Q′ into a circuit Cn in MCSP as follows.
For any term in the form Ai = 1, we convert into xi. In contrast, for any term
in the form Ai = 0, we convert into ¬xi. For any term in the form Ai = c
(c /∈ {0, 1}) we convert into 0. Any AND (OR, NOT) is converted into the
corresponding AND (OR, NOT) gate. It is clearly that every operand (term) in
IEQ is converted into exactly one “input” to the circuit. Because the size of the
circuit is the number of gates used in it. Then in this case, the size of circuit is
equal to the total number of operators used in sel(Q′). Therefore, the circuit Cn

is exactly the circuit that we need to find in MCSP. For example, to create the
circuit C from a query Q as shown in Figure 9, we convert “A1 = 1” into “x1”,
“A3 > 0” into “x3”, “A2 > −1” into “1” and “A3 < −5” into “0”.

In addition, if QBODS could not find such Q′ that have selection clause size
at most sn then, MCSP will also not find such a circuit Ci that has the size at
most sn. Let us prove this property by contradiction. Let assume QBODS could
not find any queries Q′ with size(sel(Q′)) ≤ sn whereas MCSP finds a circuit Cc

with circuit size at most sn. We transform Cc into a selection condition Sc. Any
occurrence of variable xi is transformed into the term Ai = 1. Any occurrence
of variable ¬xi is transformed into the term Ai = 0. Transform any AND (OR,
NOT) gate into the corresponding AND (OR, NOT) operator. We also reduce
the circuit with the occurrence of constant 0 and 1 as follows:

– 0 ∨ Ci ≡ Ci (or 1 ∧ Ci ≡ Ci). We recursively convert circuit Ci into the
corresponding selection condition.

32

x1

x3

1

0

Fig. 9. The circuit corresponding the query Q = πA1,A2,A3

σ(A1=1)∧(A3>0)∧(A2>−1∨A3<−5) R)

– 0∧Ci ≡ 0. We transfer into (A1 = 1)∧ (A1 = 0). It derives that the number
of operators in this case (equal to 1) is less than or equal to the number of
gates used in 0 ∧ Ci.

– 1 ∨ Ci ≡ 1. We transfer into (A1 = 1) ∨ (A1 = 0).

It is clearly that Sc has the size at most sn. A new query Q′′ derived from
Sc also satisfies the condition of QBODS .

Q′′ = πA1,··· ,An
(σCc

R) (5)

It means that we could find one IEQ (Q′′) with the size of the selection clause
is at most sn. This contradicts to our assumption.

In summary, we have MCSP <P QBODS <P QBOS . It has been proven
that MCSP is unlikely in P [12]. Thus QBOS is also unlikely in P . ¤

Theorem 2. Given an input query Q, we define QBOU to be the problem to
find an output query Q′ of the form Q′ = Q1 UNION Q2 · · · UNION Qk where
each Qi is in the SPJ form and the select-clause refers to only attributes in the
schema such that Q′(D) = Q(D) and k is minimized. Here SPJ form denotes the
SQL queries with only selection, projection and join operations. Then QBOU is
NP-hard.

Proof. We reduce the well-know NP-hard problem, the SET-COVER to QBOU .
Similar to proving the Theorem 1, we will also consider the decision form of
these problems; i.e. instead of minimizing parameter k, we consider a variant
form of the problem when parameter k is at most some user defined constant.

Given an instance of SET-COVER problem; i.e, a set of universe items U =
{a1, a2, · · · , an} and a set S = {S1, · · · , Sm} where each Si is a subset of U and⋃m

i=1 Si = U . Firstly, we construct m tables Ti where each table Ti is an one
column table containing all elements in Si as its tuples (let us call the column
name of Ti as ci). Then, we give a query:

Q =
m⋃

i=1

(πciTi) (6)

33

The QBOU finds IEQs (Q′) that are equivalent to Q and Q′ involves at most
k UNION operations. If such a query Q′ exists then each relation occurring in
Q′ is exactly the subset that we need to find for SET-COVER problem. To
understand why this happens, let assume Q′ = Q1 UNION Q2 · · · UNION Ql

(l ≤ k). Because each Qi is in the SPJ form and all the projected attributes
must be the attribute from the schema, each projected attribute in Qi must be
one attribute in some table Tk. Without loss of generality, assume the projected
attribute in Qi is cti

. We could write Qi in the form:

Qi = πTti
.cti

(Pi), (7)

where Pi might contain the join and selection conditions on some relations Tj .
Note that we do not focus on the Pi. The most important element that needs to
pay attention to is the projection relation (i.e., Tti

in this case).

Q′ = πTt1 .ct1
(Pt1) UNION · · · UNION πTtl

.ctl
(Ptl

) (8)

From l projection relations Ttj
, we find out l subsets Stj

which corresponds
to Ttj

. These sets are clearly the subset that we need to find for SET-COVER
problem.

In contrast, assume that QBOU could not find any Q′ that has the number
of UNIONs at most k and SET-COVER could find l subsets St1 , · · · , Stl

(l ≤ k)
such that

⋃
i=1,··· ,l(Sti) = U . Then, we formulate a new query Q′′ where each

UNIONs clause involve the relation corresponding to set Sti
:

Q′′ =
⋃

i=1,··· ,l
πTti

.cti
(Tti

) (9)

We easily see that Q′′ will select all items in U which means that Q′′(D) =
Q(D) and the number of UNIONs clause in Q′′ is at most k. This consequently
contradicts to our assumption. Therefore, whenever QBOU could not find any
IEQs query Q′ with at most k UNIONs clause then SET-COVER will also not
find any l sets of Si such that l < k and

⋃
Si = U .

In summary, we have reduced from the SET-COVER to QBOU in polynomial
time. Because SET-COVER is NP-hard, QBOU is therefore NP-hard. ¤

Theorem 3. Given an input query Q, we define QBOG to be the problem to
find an output query Q′ such that Q′(D) ≡ Q(D) and Q′ can contain arbitrary
arithmetic expressions in the select-clause. Then QBOG is PSPACE-hard.

Proof. We will reduce the Integer Circuit Evaluation Problem (ICE) to QBOG.
Because ICE is PSPACE-hard thus we obtain QBOG to be PSPACE-hard.

For each singleton set Xi in the input of ICE, we build a corresponding one
column table Ti which takes the value of Xi as its tuple. The column name of
table Ti is denoted as ci. We transform the given circuit C into a view V which
has one column c as follows: any gate that need the original singleton set Xi

34

is transferred into one SQL clause πci
(Ti). Any UNION gate is transferred to

UNION operator in SQL. Any multiplication gate involving two sets Xi, Xj is
transferred into

πTi.ci·Tj .cj (Ti × Tj) (10)

Any addition gate involving two sets Xi, Xj is transferred into:

πTi.ci+Tj .cj
(Ti × Tj) (11)

This step is executed in polynomial times (O(L) where L is the number of
gates in C).

Given an integer N in ICE, we formulate a query:

Q = πV.cσV.c=N (V) (12)

If QBOG could find queries Q′ which are equivalent to Q then ICE will return
yes. In contrast, if Q′ could not find any instance-equivalent queries with Q then
ICE return no. Let us prove the above statement. If QBOG could find some
queries Q′ which is equivalent to Q; it means that N ∈ V or N is accepted by
the circuit C. In contrast, if QBOG could not find any Q′ which is equivalent to
Q; it derives that N is not acceptable by circuit C then the system returns no.

In other words, we have ICE <P QBOG. In [26], the author showed that
ICE is PSPACE-hard. Hence, we conclude that QBOG is PSPACE-hard. ¤

B The optimality of Gini index

Theorem 4 (Optimality of Gini index). The Gini index value obtained
from the method described in Section 3 is the smallest one among values of
Gini(S1, S2) with all possible combinations of assigning class labels for free tu-
ples in S w.r.t. the at-least-one semantic.

Proof. Let Pm+1 denote the bound tuples in S that are labeled positive, and
Pm+2 denote the bound tuples in S that are labeled negative. Therefore, S =
P1 ∪ · · · ∪ Pm ∪ Pm+1 ∪ Pm+2. When splitting S into S1 and S2, there are
(nm+1,j +fj) tuples labeled positive and (nm+2,j +

∑m
i=1 ni,j−fj) tuples labeled

negative in Sj (j ∈ {1, 2}). Thus, the Gini of each Sj (j ∈ {1, 2}) is given by:

Gini(Sj) = 1−
(

nm+1,j + fj∑m+2
i=1 ni,j

)2

−
(

nm+2,j +
∑m

i=1 ni,j − fj∑m+2
i=1 ni,j

)2

The Gini index of the split at S is given by:

Gini(S1, S2) = α1 ·Gini(S1) + α2 ·Gini(S2),

where αj = (
∑m+2

i=1 ni,j)/(
∑2

j=1

∑m+2
i=1 ni,j), j ∈ {1, 2}.

35

After simplifying Gini(S1, S2), we obtain:

Gini(S1, S2) = c− (a1 · f1 + b1)2 − (a2 · f2 + b2)2, (13)

where c, ai, bi (i = 1, 2) are constants.
Let Fj =

∑m
i=1 ni,j , j ∈ {1, 2}. The domain space R of f1 and f2 is confined

by the polygon ABCDE as shown in Figure 10. This domain space is derived
from the following constraints:

A1. Tj ≤ fj ≤ Fj , j ∈ {1, 2}
A2. f1 + f2 ≥ m

A3. T1 + T2 ≤ m

A4. Tj + F3−j ≥ m, j ∈ {1, 2}

The first and second constraints (A1, A2) are derived from the at-least-
one semantics. The third constraint (A3) is easily shown because the number
of subsets that have free tuples completely in S1 or S2 must be less than or
equal to the total number of subsets that have free tuples in S. The fourth
constraint (A4) involves more arguments. According to the definition of T1; the
term (m−T1) denotes the number of subsets of free tuples, each of which has at
least one element in S2. One can then derive the fact that total number of free
tuples in S2 must be greater or equal to the number of subsets of free tuples in
S2. Thus, F2 ≥ m− T1 or T1 + F2 ≥ m. Similarly, we also have T2 + F1 ≥ m.

We observe that the domain space R is closed and bounded. Applying Max-
min tests theorems as described in Chapter 12.8 of [21] to Gini(S1, S2), we derive
that the minimality of Gini(S1, S2) only occurs when (1) the first derivative test
of f1 and f2 are equal to 0 or (2) (f1, f2) lies in the boundary of R. In the first case
when the first derivative test of f1 and f2 are equal to 0 we have Gini(S1, S2) = c.
This value is the global maximum value of Gini(S1, S2) because Gini(S1, S2) ≤ c
for all points (f1, f2) ∈ R. Therefore, we only need to consider the values of
Gini(S1, S2) when (f1, f2) are in the segment: (1) AB, 2) AC, (3) CD, (4) BE
and (5) DE; then choose the smallest value among them to become the minima
of Gini(S1, S2) in R. As we will see, the first four cases are investigated in the
same way, only the last case requires one more step to investigate. Let us consider
these cases as follows.

Case 1: (f1, f2) lies in segment AB. In this case, by substituting f1 = F1

into (13), to minimize Gini(S1, S2) becomes equivalent to minimize the function
g(f2) = c − (a2 · f2 + b2)2 where T2 ≤ f2 ≤ F2. It is easily shown that g(f2)
achieves the minima only when f2 = F2 or f2 = T2. This corresponds to the two
end points (i.e, A or B) in the segment AB.

Case 2, 3 and 4: In these cases, because one of the two variables (f1 or f2) is
fixed, they can be similarly proved as the first case. For example, in the second
case by substituting f2 = F2 into (13), we also need to minimize the function
with one variable (i.e., f1) in the same form with g(f2) and obtain the minima
at the two end points in the segment AC.

36

Case 5: (f1, f2) lies in segment DE. In this case, we have f1 + f2 = m. By
substituting f2 = m− f1 into (13), we obtain:

Gini(S1, S2) = c− (a1 · f1 + b1)2 − (a2 · (m− f1) + b2)2

= c3 − (f1 · a3 + b3)2,

where c3, a3, b3 are constants.
We see that the Gini(S1, S2) in this case achieves the minima only at the

two end points in the domain of f1 (i.e.; f1 = T1 or f1 = m− T2). These points
correspond to the two end points (i.e, D or E) in the segment DE.

In summary, to find the minima of Gini(S1, S2) in the region R, we only need
to consider values of Gini(S1, S2) among 5 intersection points A, B, C, D and
E and find the smallest values among them. Note that these points correspond
to the five cases that we have considered in Section 3 respectively. Thus our
theorem has been proven.

p
2

p1
T1 F1

T2

F2
A

B

C

D

E

m – T1

m – T2

Fig. 10. The domain space of f1, f2 is confined by the polygon ABCDE.

37

