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ABSTRACT 
We demonstrate the usefulness of the uniform resource locator 
(URL) alone in performing web page classification.  This 
approach is magnitudes faster than typical web page 
classification, as the pages themselves do not have to be fetched 
and analyzed.  Our approach segments the URL into meaningful 
chunks and adds component, sequential and orthographic 
features to model salient patterns.  The resulting binary features 
are used in supervised maximum entropy modeling.  We analyze 
our approach's effectiveness in binary, multi-class and 
hierarchical classification.  Our results show that, in certain 
scenarios, URL-based methods approach and sometime exceeds 
the performance of full-text and link-based methods.  We also 
use these features to predict the prestige of a webpage (as 
modeled by Pagerank), and show that it can be predicted with an 
average error of less than one point (on a ten-point scale) in a 
topical set of web pages.  

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – linguistic processing 

General Terms 
Algorithms, Experimentation. 

Keywords 
Uniform resource locator, word segmentation, maximum entropy, 
text categorization, webpage classification. 

1. INTRODUCTION 
Current webpage classification techniques use a variety of 
information to classify a target page: the text of the page itself, 
its hyperlink structure, the link structure and anchor text from 
pages pointing to the target page and its location (given by its 
URL).  Of this information, a web page's uniform resource 
locator (URL) is the least expensive to obtain and one of the 
more informative sources with respect to classification.  

Past systems have incorporated URL features into machine 
learning frameworks before, but to our knowledge, only two 
approaches have attempted to utilize this source of information 
beyond simple heuristics [9][15].  Surveys on web classification 
techniques, such as [18], have largely ignored this information.  

URLs are often meant to be easily recalled by humans, and 
websites that follow good design techniques will encode useful 
words that describe their resource in the website's domain name 
as advocated by best practice guidelines ([11], pg. 26).  Websites 

that present a large amount of expository information often break 
their contents into a hierarchy of pages on subtopics.  This 
information structuring for the web often is mirrored in their 
URLs as well.  As the URL is short, ubiquitous (all web pages, 
whether or not they are accessible or even exist, have URLs) and 
is largely content-bearing, it seems logical to expend more effort 
in making full use of this resource.  

We approach this problem by considering a classifier that is 
restricted to using the URL as the sole source of input.  Such a 
classifier is of interest as it would be magnitudes faster than 
traditional approaches as it does not require pages to be fetched 
or the full text or links to be analyzed. We have implemented 
such a classifier which uses a two-step machine learning 
approach.  A URL is first segmented into meaningful tokens 
using information-theoretic measures.  This is necessary as some 
components of a URL are not delimited by spaces (especially 
domain names).  These tokens are then fed into an analysis 
module that derives useful composite features for classification.  
These features model sequential dependencies between tokens, 
their orthographic patterns, length, and originating URI 
component.   

In the second step, machine learning is used to induce a multi-
class or regression model from labeled training URLs that have 
been processed by the above pipeline.  New, unseen test URLs 
can then be classified by processing them first to extract features, 
and then applying the derived model to obtain a final 
classification.  A key result is that the combination of quality 
URL segmentation and feature extraction results in a significant 
improvement in classification accuracy over baseline approaches. 

To assess the system’s performance we have conducted a range 
of experiments that demonstrate its applicability in multi-class 
and hierarchical classification as well as relevance feedback, 
using standard datasets.  In Sections 2 and 3, we discuss the two-
stage approach to feature extraction.  Following a short 
description of maximum entropy modeling, we describe the 
experiments and analyze the performance in Section 5. 

2. RECURSIVE SEGMENTATION USING 
ENTROPY REDUCTION 
Supervised machine learning requires examples of the form 
f1,f2,...fn: C in which n features are distilled from a problem  
instance, and provided to the learner along with the class label C.  
In our system, tokens derived from the URL serve as binary 
features: for each token ti present in a training URL, fi(u) = 1 if ti 
is present in the URL u and 0 otherwise, where i ranges from 1 
to |T|, the number of unique tokens seen during training.  



Thus, it is critical to select meaningful tokens to represent the 
URL. A simple and effective approach is to segment a given 
URL into its components as given by the URI protocol (e.g., 
scheme :// host / path / document . extension ? query # 
fragment).  We can further break these components at non-

alphanumeric characters and at URI-escaped entities (e.g., '%20') 
to create smaller tokens.  Such a baseline segmentation is 
straightforward to implement and typically results in 4-7 tokens 
for subsequent classifier induction. 

Table 1: URL feature classes and examples.  Other tables reference these classes by their single letter key (e.g., Length → ‘L’).

Sample URL http://audience.cnn.com/services/activatealert.jsp?source=cnn&id=203&value=hurricane+isabel 
  

Feature Class (class tag) Example 

0. Baseline (B) http audience cnn com services activatealert jsp source cnn id 203 value hurricane Isabel 

1. Segments by Entropy 
Reduction (S)  

 http audience cnn com services activate alert jsp source cnn id 203 value hurricane isabel  

2. URI Components (C) scheme:http extHost:audience dn:cnn tld:com ABSENT:port path:services …  ABSENT:fragment 

3. Length (L)  chars:total:42 segs:total:8 chars:scheme:4 segs:scheme:1 chars:extHost:8 segs:extHost:1... segs:extn:1 

4. Orthographic (O) Numeric:3 Numeric:queryVal:3 

5. Sequential Bi-, Tri,  
4-grams (N) 

com|cnn cnn|audience audience|services services|activate activate|alert alert|jsp com|cnn|audience 
cnn|audience|services ... services|activate|alert|jsp 

6. Precedence Bigram (P) com>services com>activate com>alert com>jsp cnn>services cnn>activate cnn>alert cnn>jsp ... activate>jsp 

The first 2 rows of Table 1 show a sample URL and its baseline 
segmentation. 

Notice that some portions of the URL contain concatenated 
words (e.g., activatealert).  This is especially prevalent in 
website domain names.  Segmenting these tokens into its 
component words is likely to increase performance as these 
sparsely occurring tokens can be traded for more frequent and 
informative ones.  Word segmentation techniques -- for 
segmenting languages without delimiters (e.g., Chinese) – are 
applicable to this task.   [4] categorizes word segmentation 
approaches into four categories: 1) statistical methods, 2) 
dictionary based methods, 3) syntax-based methods and 4) 
conceptual methods.   

Previously, Kan studied different methods for URL token 
segmentation [9]. One approach was segmentation by 
information content (entropy) reduction, in which a token T can 
be split into n partitions if the partitioning’s entropy is lower 
than the token's:  

H(t1,t2,...tn) < H(Tletters)  

where ti denotes the ith partition of T, and Tletters denotes the 
partitioning in which each letter of the token is a separate 
segment.  Intuitively, a partitioning that has lower entropy than 
others would be a more probable parse of the token.  Such 
entropies can be estimated by collecting the frequencies of 
tokens in a large corpus.  Fortunately, token statistics on the 
large 49M WebBase corpus are publicly available1, from which 
we can calculate entropy estimates.  

Finding the partitioning that results in minimal entropy requires 
exponential time, as all 2|T-1| possible partitions are searched.  
The brute force algorithm used previously is inefficient for long 
strings.  We propose a recursive solution that searches the space 
of possible partitions.  A token is searched for a single partition 
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point that lowers its entropy.  The resulting tokens are then 
recursively searched using the same method.  While this 
approach does not guarantee that the global minimum entropy is 
found, the algorithm has a much lower time complexity, O(n log 
n), and matches the local minima in most cases.  The resulting 
token segmentation example is given in row 1 in Table 1. 

3. URL FEATURE CLASSES 
In this stage, we want to further enrich these segment features 
with other useful ones.  In [9] ambiguous tokens are expanded 
using correspondences found in the {<title>} HTML tag.  For 
example, md could be expanded as md, medical or moldova 
(among others). According to the study, this technique did not 
affect classification much, as i) few (~6%) URLs have tokens 
that are ambiguous and ii) many ambiguous tokens' expansion act 
as evidence for the same class (e.g., md as medical or meds 
would both favor a Health subject classification).  

In contrast, we explore classes of features that we feel are 
applicable to a broad range URLs and that are likely to have a 
positive impact on classification.  We first discuss feature 
extraction for URI components, length and orthographic patterns, 
followed by sequential patterns.  

3.1 URI Components and Length Features 
A token that occurs in different parts of URLs may contribute 
differently to classification.  Consider the token ibm, appearing 
in the domain name in one URL, and in the document name in 
another.  In the first case, we know that the web page is located 
on IBM's web server, but could relate to any technical topic.  In 
the second, the document is named “IBM” and is likely to 
discuss the company itself.  Distinguishing where these tokens 
occur may improve classification accuracy.   

This is easily modeled by creating features that indicate which 
URI component a token comes from.  We augment the feature set 
by copying of all of the tokens from segmentation but qualifying 
them with their component origin (as shown in Row 2 of Table 1.  



We add these features rather than replace the original ones, as 
the original features are more general and have higher frequency 
counts which combat sparse data problems.  

The absence of certain components can influence classification as 
well.  Advertisement URLs that underlie an advertising image 
banner often have a second URL embedded in the query 
arguments (e.g., doubleclick URLs).  Thus the absence of a query 
argument is partial evidence that a URL is not an advertisement 
link.  We add a feature to the feature vector when a URI 
component is absent (also seen in the example in Row 2).  

The length of the URL or its components may also influence 
classification.  For example, departmental staff listings are 
usually not too deeply nested within an academic website.  On 
the other hand, white papers or software drivers for products are 
usually very deeply nested.  We thus add lengths of the URL and 
its components as features to the classifier, as shown in Row 3. 

3.2 Orthographic Features 
Using the surface form of a token also presents challenges for 
generalization.  For example, tokens 2002 and 2003 are distinct 
tokens and have no correlation with each other in the framework 
proposed thus far.  We borrow the notion of creating word 
features from related work in named entity recognition [2] and 
add a few orthographic features to our feature set, as shown in 
Row 4.  We add features for tokens with capitalized letters 
and/or numbers that differentiate these tokens by their length.  
These features are added both in a general, URL-wide feature as 
well as ones that are URI component-specific. 

3.3 Sequential Features 
Shih and Karger's work on URL trees [15] demonstrated that 
URL token sequences can be effective for classification. In their 
work, a tree rooted at the leftmost token (usually http) is created, 
in which successive tokens (read left to right) are inserted as 
children.  Each URL constitutes a path from the root to a leaf, 
and a tree structure emerges after a number of URLs are 
inserted.  The intuition is that subtrees within the URL tree are 
presumed to have a similar classification.  

 While they need to classify URLs within a single website, our 
scenario involves many websites.  As such, we cannot directly 
apply their approach to general URL classification, in which 
URLs from different websites need to be classified, as different 
websites appear as different “subtrees” in the URL tree.  This is 
a difficulty as common subsequences of nodes cannot be 
generalized (such as recurring patterns in different websites).  

We address this problem in our work by noting it is the 
sequential order of nodes in the URL tree that is of import, and 
not the rooted path.  For example, seeing the token sequence 
hurricane isabel anywhere in the URL should lend evidence to 
certain categories.  Sequential order among tokens also matters, 
as the token sequences web spider and spider web are likely to 
appear in URLs belonging to different classes.  

Furthermore, consider the case of the token sequences states 
georgia cities atlanta and georgia altanta.  Modeling sequences 
of tokens as features fails to capture the similarity between these 
sequences, as the intervening token cities forces the crucial 
precedence relationship to be missed.  We can capture this by 

introducing features that model left-to-right precedence between  
tokens: georgia>atlanta.  

An important note is that we also reverse the order the 
components within the server hostname.  Hostnames are written 
specific to general (e.g., “ server . domainname . tld . country ” ) 
whereas paths to files are written general to specific.  This 
operation helps to preserve the precedence as general to specific 
throughout the URL. 

Rows 5 and 6 in Table 1 show the features that are added by 
these two operations.  Sequential dependencies are modeled by 
bigram, trigram, and 4-gram features, similar to context features 
used in [13] used in maximum entropy part-of-speech tagging. 

4. CATEGORIAL CLASSIFICATION 
USING MAXIMUM ENTROPY 
Maximum entropy (hereafter, ME) modeling has been 
successfully applied to text classification problems [12].  From a 
practitioner's point of view, its advantage is that it can handle a 
large set of features that are interdependent.  Features (defined as 
“contexts” in the ME literature) are automatically weighted by an 
optimization process, resulting in a model that maximizes the 
conditional likelihood of the class labels c, given the training 
data d, or P(c|d).  The result is an exponential model of the form: 

∑=
i

ii cdf
dZ

dcP )),(exp(
)(

1
)|( α  

where each fi(d,c) is a feature and αi is the weight to be 
determined through optimization.  Z(d) is a normalization factor 
used to force the conditional probabilities to sum to 1.  

Maximum entropy is so named as it generates a unique 
probability model with the maximum degree of uncertainly that 
fits the constraints given by the data.  The resulting distribution 
does not assume facts beyond the observed data.  To do otherwise 
would be to assume information the learner does not possess.  A 
detailed explanation of ME is beyond the scope of this paper; the 
interested reader is referred to [1].  

Two methods have been proposed to optimize α weights: 
iterative scaling and, more recently, gradient ascent.  Generalized 
Iterative Scaling (GIS) updates weights by scaling the existing 
parameters to increase the likelihood of observed features.  
Iterative scaling needs to calculate only the expected values Efi, 
instead of calculating the gradient of the log-likelihood function.  
We can substitute gradient ascent for this task, using limited 
memory variable metrics as advocated by Malouf [10].  We 
experiment with both GIS and gradient ascent methods, the latter 
using Limited-memory Broyden Fletcher Goldfarb Shannon (L-
BFGS) minimization. Both have been implemented in a publicly-
available ME distribution2.  We carry out 30 iterations in our 
experiments, unless noted otherwise. 

ME modeling can also suffer from overfitting.  This problem is 
most noticeable when the features in the training data occur 
infrequently, resulting in sparse data.  In these cases, weights 
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derived by the ME model for these sparse features may not 
accurately reflect test data.  To address this weakness, smoothing 
has been advocated using a Gaussian prior.  We use a Gaussian 
prior (with σ = 1) to smooth our models in all of our 
experiments, unless noted otherwise. 

5. EVALUATION 
We hypothesize that the different classes of URL features have 
different levels of effectiveness, depending on the classification 
task at hand.  To test this, we apply ME based classification of 
URLs to several different scenarios: 

1. Binary Classification – In this case, we wish to separate two 
classes from each other. This problem recurs in web 
applications as relevance: is a web page is relevant or not? 
We assess URL classification in two scenarios: as a pseudo 
relevance feedback mechanism in TREC Web queries, and 
user-specific link recommendation in news web pages. 

2. Multi-class Classification – We can easily construct a multi-
class classifier by building n binary classifiers that 
discriminate each class separately.  An advantage of using 
ME is that multi-class classification is handled directly.  We 
report on the performance of URL classification on the 
standard WebKB corpus and in a related task of 
classification for focused crawling of scholarly publications. 

3. Hierarchical Classification – Subject hierarchies allow 
internet users to quickly browse a list of topically-relevant 
web pages.  Pages are nested in increasingly fine-grained 
categories.  We experiment with hierarchical classification 
with a large subset of the Open Directory Project to gauge 
the effectiveness of URL features on this task.  

4. Regression – Regression is needed when predicting a 
continuous quantity from input features.  In web 
applications, the importance (or prestige) of a webpage may 
be modeled by a numeric attribute.  One such attribute is 
Pagerank [3], which is usually given as a logarithmic 
quantity.  We assess whether URL features can be used to 
predict a page’s Pagerank.  In addition to ME, we use linear 
regression as another form of learning to take advantage of 
the ordered structure of the classes. 

We report the effectiveness of our full battery of URL features on 
the above tasks (all feature classes, as reported in rows 1-6 in 
Table 1, reported as ‘All’ in our experiments).  Additionally, we 
performed component evaluations to find the efficacy of 
individual feature classes.  We use the single letter tags in Table 
1 to denote the feature classes throughout the remainder of the 
paper.  When applicable, we report results from previous work 
and compare with equivalent feature sets from our work.  

5.1 Relevance Feedback: TREC Web 
The most ubiquitous problem in web page classification might be 
defined as relevance: is a given page relevant to a particular 
search query?  Current search engines employ textual, link, 
anchor text, URL, and spatial features to rank web pages for user 
queries.  Would the addition of our comprehensive URL features 
improve ranking algorithms?   

An ideal experiment would be to perform IR experiments on a 
large, standard collection both using and omitting URL features. 
Due to \resource limitations, we were unable to conduct such an 
experiment.  Instead, we assess the performance of URL-based 
classification in relevance feedback (RF).  In classical relevance 
feedback, a user who executes a search for relevant documents on 
a query first marks relevant documents retrieved by the system.  
These marked documents are used to find other (hopefully 
relevant) documents, based on their similarity to the marked 
documents.  While classic RF calculates similarity based on the 
textual features in the full text of a document, we can substitute 
the textual features for URL-based ones.  The idea is that other 
relevant web pages possess similar tokens and token patterns in 
their URLs.  

We use the standard dataset and queries used in the Text 
REtrieval Conference's main web task (TREC 9 and 10, [8]) to 
perform experiments.  The relevance judgments for all 100 
queries from both years' data were used.  This dataset also 
provides a list of web pages (on average, about 1,400 pages) 
previously judged as relevant/non-relevant by human assessors 
for each query.  Note that the documents on these lists are the 
only documents within the 1.6 M page dataset that were assessed 
by humans.  This means we cannot properly assess an RF 
algorithm if it proposes a web page was not previously judged.  

In light of this limitation, we modify the task to simulated 
relevance feedback.  In this modified task, we ask if a system can 
distinguish relevant documents on a target input set of 
documents, given another set of labeled relevant and labeled 
irrelevant documents.  This classification task is not equivalent to 
the original task, as it ignores the performance of the classifier on 
documents not on the target list, but may yield indicative results.  
We executed simulated RF using five-fold cross validation, 
maintaining an equal ratio of relevant and irrelevant documents 
in each set.  Table 2 summarizes performance using GIS 
parameter estimation over all 100 queries in the dataset. 

Table 2: Mean precision, recall and F1 for simulated 
relevance feedback task.  Results averaged over all 100 

queries. 

ME configuration Avg. Precision Avg. Recall Avg. F1 

GIS, no smoothing .646 .303 .413 

GIS, smoothing .784 .049 .095 

5.1.1 Analysis 
The results show that using URLs for simulated relevance 
feedback is promising.  Both ME schemes emphasize precision at 
the cost of recall, which is more favorable in actual RF. We 
believe this may be due to the overwhelming skew of the 
assessed document list. While variance was high, an average 
query had about 60 positive examples but over 1,300 negative 
ones.   

Performance varied greatly from query to query. With smoothing, 
ME suggests URLs only on a small percentage of the queries (as 
evident by the low recall (.049).  We conjecture that smoothing 
may help to improve precision in queries where many documents 
are relevant, but is not effective in queries with few relevant 



documents. As smoothing helps to accurately weight low 
frequency features, we hypothesize that it creates a classification 
bias towards the majority class.  

Can we compare these results against actual IR systems in the 
TREC Web Task? Unfortunately, the answer is no.  Our 
simulated RF task is considerably easier than the TREC main 
web task, as we have access to a partial list of relevant 
documents.  In addition, in the simulated RF task, we only judge 
documents in a limited target list and not on the whole 
collection.  A fairer comparison would be to compare the use of 
such URL features in the interactive task, where relevance 
feedback is normally assessed. Unfortunately, this comparison is 
not possible, as the TREC task does not currently use web 
documents. 

In [8], we see that the best performing systems report a fairly low 
average precision of .20 and .22 (JustSystem, TREC 9 and FUB, 
TREC 10, respectively).  Although further testing is needed to 
validate this hypothesis, we believe that the addition of 
comprehensive URL features can boost IR performance as our 
simulated RF task shows high precision in comparison to other 
state of the art systems. 

5.2 News Web Page Link Recommendation 
In link recommendation, the goal is to build a classifier to 
recommend useful links given a current webpage in a browser.  
Such links can be highlighted or placed in a “recommended 
pages” menu.  In [15], such a recommendation dataset was 
created by asking 176 users to examine five news web pages and 
click on any hyperlinks to stories that they found interesting. 

Using their dataset, we follow their experimental procedure 
where they perform five fold cross validation, using a leave-one-
page-out policy (e.g., train on the judgments for the first four 
pages, and test to see whether recommendations match for the 
fifth page).  A separate classifier was made for each of the 176 
users and tested, totaling 182,325 data points. Shih and Karger 
tested URL tree based features, sharing some characteristics with 
our n-gram features in Section 3.3.  While they use a tree-based 
model of learning, we use standard ME, not optimized for tree 
features.  In addition to their tree-based learner, Shih and Karger 
report results for using similar features in a standard SVM 
framework. 

To extend their experiments, we employ our features in both our 
ME framework as well as in an SVM framework.  For ME 
classification, we present only the best results using L-BFGS.  
Table 3 shows the results of the experiment, in which the 
classifier recommends the top 1, 3, 5, or 10 links on a page with 
the highest probability of similarity to user clicks on the training 
pages.  The first four rows are reprinted from [15] for 
comparison. 

Table 3: Number of correct recommendations across all 176 
users across 5 pages in the recommendation dataset (2 

classes, 182K data points).  Bolded numbers indicate top 
performers. 

Learner Configuration Top 1 Top 3 Top 5 Top 10 

Random (Lower Bound) 29 104 162 330 

Perfect (Upper Bound) 857 2488 3899 6093 

TL-URL 385 979 1388 2149 

SVM-URL 308 839 1268 1953 
     

SVM (S)  355 969 1482 2473 

SVM (N+P)  350 956 1421 2365 

SVM (All) 363 996 1456 2412 

ME (S) 379 1063 1657 2767 

ME (N+P) 360 1028 1573 2577 

ME (All) 365 1100 1682 2775 

5.2.1  Analysis 
Shih and Karger’s tree learning algorithm (row TL-URL) using 
their URL features performs best at recommending the single 
most probable link, but is outperformed on the top 3, 5 and 10 
metrics. SVM-URL denotes Shih and Karger’s results using 
SVM features, which performs most poorly among the classifiers 
shown here.  Our contribution here is to show that better 
classification is possible by extracting more meaningful features 
from the URL data, and that these features outweigh the gains 
made by using a specialized learner.  This is exemplified in all 
three rows of SVM results from our configurations, in which we 
use the same machine learner as past results but use our URL 
features.  Gains of over 20% are achieved by using all URL 
features discussed. 

In this configuration, ME also outperforms SVM classification on 
this dataset for the top 3, 5 and 10 recommendations.  Note that 
the performance of feature set (N+P), which is our best 
approximation of Shih and Karger’s URL tree features, does 
poorly compared to the basic URL segmentation (S) under both 
SVM and ME models.  We take this as a sign that our features 
can improve classification performance, as our composite feature 
set improves over our implementation of previous work by up to 
29% in the best case of top 10 recommendation task. 

5.3 Multi-class Categorization: WebKB 
We now turn our attention to multi-class scenario. The WebKB 
corpus is a standard dataset for such benchmarking.  It consists of 
web pages collected from four universities, classified into seven 
categories.  We employ a subset of the WebKB, containing 4,167 
pages (the ILP 98 dataset [16]), in which each page is associated 
with its anchor words (text from the hyperlinks that point to the 
page).  The task is identical to earlier published experiments: 
only the student, faculty, course and project categories pages 
were used, and cross-validation using leave-one-university-out 
was performed for evaluation.  Previous work using the full text 
have employed support vector machines (SVM) [17], maximum 
entropy [12], and inductive logic programming [16]. 

Table 4: WebKB performance (4 classes, 4.1K data points).  
Past results re-printed on top half. ‘NR’ = not reported. 

Past Learner Configurations [Cite] Accuracy Macro F1 

SVM w URL (Kan, [9]) NR .338 

SVM w Full Text (Sun et al. [17]) NR .492 

SVM w Anchor Text (also  [17]) NR .582 



ME w  Full Text (Nigam et al. [12]) 92.08% NR 
   

URL configuration (ME using GIS) Accuracy Macro F1 

S  57.16% .273 

C 23.34% .094 

L 53.60% .174 

O 54.18% .190 

N 32.08% .341 

P 41.50% .350 

All 76.18% .525 

Full Text 78.39% .603 

Full Text + All 80.98% .627 

5.3.1 Analysis 
Results using URL features are shown alongside past published 
results in Table 4.  We give performance values for both instance 
accuracy as well as macro F1, as both metrics have been used as 
performance measures in past work. The new URL features 
perform very well, boosting performance over URL previous 
work (configuration ‘S’) by over 30% in the best case, resulting 
in 76% accuracy.  This is impressive as the full text of the words 
of the page achieve about 95% of the performance of full text 
methods.  A small gain in classification performance results 
when our URL features are combined with full text, showing that 
URL features can help to improve even full-text approaches.  
These results are similar to results shown for anchor text [17]. 

From the results, the n-gram and precedence features seems to be 
the most helpful, this is likely due to the fact that many URLs in 
the WebKB share many tokens in their paths.  Segmentation of 
tokens is not very effective here, likely because the corpus does 
not have many compound tokens (again, featured most 
prominently in long domain names).  

Three caveats need to be explained.  First, note that our 
experiment show a best performance of ~78% accuracy using full 
text in contrast with [12] which shows 92% accuracy.  The 
difference is that we perform leave-one-university-out cross 
validation, which we feel reflects real-world situations better.  
Also, Kan and Sun et al. used a set of binary classifiers rather 
than a true multi-class classifier.  This can skew F1 results as the 
four classifiers can be separately optimized, leaving some 
instances unclassified (which can improve F1).  Finally, Sun et 
al. perform stemming and stop word removal for SVMs, which 
we omit; we simply employ each word as a separate feature as 
input for ME classification. 

5.4 Focused Crawling: Scholarly Publications 
One potential application of URL classification is in focused 
crawling.  In focused crawling, a web crawler targets a specific 
type or genre of document.  In the context graph model [5], 
context language models are built to model the content of pages 
within 1, 2 or more links away from the desired page type.  
During the crawl, all downloaded pages are classified by the 
context model.  Pages classified to be within 1 link of the desired 

page type are thus processed before ones on pages classified to be 
within 2 links, and so on. 

With URL classification, we can move classification earlier in 
the pipeline: from modeling the destination page to modeling the 
linking URL.  Similar to the recommendation scenario earlier, 
we assess whether a URL on a page will lead us to a target page 
or a page within 1, 2, or more links of a target page.   

In a scholarly publication crawler, we may want the crawler to 
follow a desired path: department ⇒ staff listing ⇒ homepage 
⇒ publications.  In crawling, the model is used to direct the 
crawler from the starting class to the eventual target.  We can 
then treat these as a standard multi-class classification problem. 

We collected a four-university dataset in December 2004 
consisting of 2,577 web pages in five categories: the four above 
plus a other category.  Note that since there are many faculty 
members in each university, that the class distribution in the 
dataset is heavily skewed towards the target class and the other 
category.  Also note the multi-label property of the target class 
publication with homepage; many researchers list their 
publications as part of their homepage.   

We conducted tests using the URL features as well as ones using 
the full text.  Here we try full text as well, following [17]’s 
recommendation to stem the text. Results are shown in Table 5, 
using leave-one-university-out cross validation. 

5.4.1 Analysis 
As in the WebKB corpus, URL features are competitive with full 
text approaches.  In this corpus however, the features do not 
interact well to produce optimal results when using all feature 
classes: component and orthographic features do better on their 
own.  URL features are likely dependent on the dataset and task.  
Still, given the evidence, we recommend the topic-sensitive 
crawlers should incorporate a URL classification module.  Such a 
module performs as well as full-text approaches, while 
decreasing bandwidth usage. 

Table 5: Crawling dataset classification performance  
(5 classes, 2.5K data points, ME using GIS with 300 

iterations) 

Config. Acc. Mac. 
F1 

 

Config. Acc. Mac
. F1 

S 51.43% .489 
 

P 59.25% .457 

C 64.14% .542 
 

All 52.98% .351 

L 49.20% .266 
 

Full Text  64.73% .490 

O 61.54% .375 
 

N 62.59% .433 
 

Stemme
d Text  

62.62% .461 

5.5 Hierarchical Categorization: The Open 
Directory Project 
The Open Directory Project (ODP) is a large, publicly available 
collection of web pages, similar to the Yahoo! and LookSmart 
directories, both of which have been previously studied [7][6]. It 
differs from other web directories in that it is entire maintained 
by volunteers and that the data is freely available for use.  
Although the ODP is constantly evolving, snapshots of the entire 
directory structure at specific points in time have been made 



available.  These publicly available snapshots are thus good 
datasets for testing hierarchical webpage classification. We use 
the snapshot dated 3 August 2004, which encompasses over 4.4 
M URLs categorized into 17 first-level and 508 second-level 
categories. Similar to other classification schemes, it also 
exhibits a skewed category distribution: 1.1 M (25%) of the 
pages belong to the two most frequent second-level classes, 
Regional/North_America and World/Deutsch.  

We use 100,000 randomly chosen ODP URLs to assemble a test 
corpus for our two-level, hierarchical experiments.  In this set 
360 of the 508 second-level categories were present.  We 
benchmarked the ME classifier using the two-level labels as 360 
distinct classes, trained on another set of 100,000 URLs.    We 
then assessed the ME classifier using a sequential hierarchical 
approach.  Using the training set, we trained a classifier for the 
top-level and 17 other classifiers (one for each top-level class).  
In testing, the top-level classifier is run first to determine which 
second-level classifier is run to produce the final class results.  
Table 6 shows the results, showing both accuracy and macro 
averaged F1 for both the flat and sequential hierarchical 
approach.  Statistics for the top-level classifier alone are also 
shown. 

5.5.1 Analysis 
Our results validate earlier findings [6] which show that 
leveraging the hierarchical structure of the classes improves 
performance: in our case, ~10% gain in test instance accuracy 
and 50% in macro average F1.  How do URL features compare 
with earlier studies using text features?  Dumais and Chen report 
a micro average F1 over the 150 second-level categories in their 
LookSmart dataset of 0.476.  The ODP task has over twice as 
many classes (360), and macro F1 is a more difficult metric to 
score well on for biased datasets(as ME trains to increase 
instance not per-class accuracy).  Yet, URL features do 
remarkably well: for the sequential ME (All) setup, we 
calculated micro averaged F1 and found it to be 0.551.  
Unfortunately, the categories and their cardinalities differ across 
hierarchical classification reports, thus the results are not directly 
comparable. 

Table 6: ODP classification performance (training and 
testing, each ≤100K data points).  Best results bolded. 

Two level (360 classes) 

Flat  Sequential 

Top-level only 
(17 classes) 

Learner 
Config. 

Acc. Mac F1 Acc. Mac F1 Acc. Mac F1 

Majority 
Baseline 

0.165 0.001 0.165 0.001 0.295 0.026 

       

S 0.458 0.055 0.503 0.122 0.577 0.334 

C 0.419 0.043 0.480 0.080 0.550 0.245 

L 0.332 0.020 0.314 0.016 0.492 0.148 

O Many URLs without features, no results 

N 0.396 0.101 0.404 0.151 0.471 0.368 

P 0.443 0.089 0.411 0.136 0.487 0.360 

All 0.157 0.002 0.504 0.110 0.574 0.324 

A second observation is that the URL features introduced in this 
paper seem to have little positive effect.  Indeed, using the basic 
URL segmentation outperforms the full set in macro-averaged F1 
and is comparable in accuracy.  An inspection reveals that ODP 
URLs tend to be domain names, often without path or document 
information (63% or 71%, of the test URLs respectively), and 
would not benefit from many of the newly introduced features.  
URL segmentation is most helpful to classify these URLs. 

5.6 Predicting Pagerank  
Our final experiments examine the prediction of Pagerank given 
our URL features.   Pagerank models the prestige of a node in a 
directed graph by iterative refinement [3].  Instead of calculating 
Pageranks directly from a web graph, we use the scores returned 
by Google’s Internet Explorer toolbar; for the experiments 
reported here, the Pageranks scores were captured during the 
period of December 2004 to January 2005.  The exact method to 
compute Pagerank as reported by Google is perhaps not known, 
but it is likely a normalized, logarithmically-scaled version of 
raw Pagerank scores.  The returned scores then consist of twelve 
nominal categories: integer scores 0 through 10, and an 
undefined class which is returned by Google if the Pagerank 
score has not been calculated.  We dispense with URLs with 
undefined Pagerank in our experiments. 

We can treat the Pagerank prediction problem as a simple multi-
class problem when using ME.  By doing so, we lose the 
continuous structure of categories: ranking a page as class 0 or 
class 10 is “equally” incorrect when it belongs to class 1.  We 
can leverage this structure by using regression to predict a 
continuous value rather than a categorical one. We carried out an 
experiment on the focused crawling dataset used in Section 5.4.  
We perform experiments over the 2,043 URLs that had a defined 
Pagerank value, again using ten-fold cross validation.   

To take advantage of the ordered structure of the classes, we use 
linear regression.  Linear regression (LR) fits a linear, weighted 
combination of features to the training data so as to minimize the 
square of the error.  However, regression grows linearly in 
complexity in proportion to the number of features used.  This 
means we could not use all of the features that ME uses (over 
34,000 in the ‘All’ feature class).  We perform simple feature 
selection to rank the features by their frequency and power to 
affect the score.  Formally, a feature is scored by: 

))(log(* ffreqprprf −  

where pr denotes the mean Pagerank in the dataset, prf the mean 
Pagerank for pages containing feature f, and freq(f), the 
frequency of f in the dataset.  We used 100 features selected by 
the process above.  Table 7 shows the error for the resulting 
learners. 

Table 7:  Pagerank prediction on crawling dataset (10 
classes, 2.0K datapoints).  Best performer in bold. 

Learner 
Configuration 

Mean Absolute 
Error 

Root Mean 
Squared Error 

Majority Baseline  1.107 1.535 
   

ME (S) 0.768  1.426 



ME (C) 0.720  1.348 

ME (L) 0.849  1.467 

ME (O) Many URLs without features, no results 

ME (N) 0.775  1.441 

ME (P) 0.930  1.661 

ME (All) 0.670  1.277 

LR (L, |f|=100) 0.892 1.303 

LR (C, |f|=100) 0.842 1.245 

LR (All, |f|=100) 0.905 1.332 

5.6.1 Analysis 
The result show that the ME configurations do quite well; the 
‘All’ configuration drops absolute and RMS error by 39% and 
16%, respectively, against the baseline.  Length and component 
feature classes also do well, as both features seem to generalize 
across sites well.  We used this as evidence to conduct linear 
regression on the same classes to retrieve features from the 
length, component and ‘All’ feature classes. However, ME is 
still competitive with regression.  Interestingly, regression with 
more feature classes (‘All’) proved worse than with less features 
(e.g., URL component features alone ‘C’).  We believe this is 
caused by the proportion of features used.  In the length dataset, 
100 features represents over 55% of all possible features, in the 
‘All’ set it is less than 1%.  This means more advanced feature 
selection (perhaps by using singular value decomposition) may 
be able to take advantage of the larger feature classes, and allow 
regression to surpass the performance of the unstructured ME 
model. 

We also performed the same experiment on a random sample of 
27,252 URLs from the ODP corpus.  Here, results were much 
less encouraging as ME and linear regression models were 
ineffective at beating the majority baseline performance of 31% 
accuracy.  The linear regression models in the crawling dataset 
showed that highly weighted features included institution names 
(e.g., wcornell = +.69). Domain names that only appear once in the 
dataset make such features unobtainable, despite URL 
segmentation.  Here, unlike in the ODP hierarchical evaluation, 
basic URL features did not work well.  We believe this is 
because URL segments may often correlate with subject (e.g., 
“frisbee” → sport), but not with prestige (“frisbee” → ? 
Pagerank). 

6. EFFICIENCY 
URL based categorization is extremely efficient both in time and 
space, as the data examined is small in comparison to other 
approaches.  The URL is also often semantically correlated with 
important classification problems, which we have empirically 
assessed through ME classification in the previous evaluations. 

As there is no network transaction incurred, classification speed 
is limited solely by the processing power and memory of 
computer and the ME model.  On an Intel P4 2.8 GHz with 1 GB 
of main memory, the ME training for a single model based on 
100,000 instance URLs with all features takes about 20 minutes 
to train. Prediction is considerably faster, although a large part of 
the time cost is loading the model into memory.  In a production 

system, the classification module would be run as a server to 
enhance performance.  For our desktop machine, we estimate a 
throughput of about 1,000 URLs per second, making real-time 
web page classification possible. 

7. CONCLUSIONS AND FUTURE WORK 
Given that the URL is a ubiquitous feature of web pages, we 
study how they can be maximally leveraged for classification 
tasks.  We have extended previous work and added features to 
model URL component length, content, orthography, token 
sequence and precedence.  We evaluate the use of these features 
over a large set of tasks including relevance, categorization and 
Pagerank prediction.  Results indicate URL features perform well 
on classification tasks, on par with or exceeding full-text and 
anchor text approaches in certain cases.  Our method also 
outperforms earlier results using URL features that employed 
specialized learning algorithms; in contrast, we employ generic 
maximum entropy modeling as the supervised machine learning 
framework.  We show that URL features also correlate with 
Pagerank in our topical collection, allowing prediction of 
Pagerank within 1 point on average on Google’s 10-point scale. 

Although using all feature classes introduced in this paper does 
well in most cases, our analysis indicates certain feature classes 
correlate better to some tasks than others.  Many of our newly 
introduced features perform well on long URLs, typically found 
in an intranet setting.   These features do not perform as well 
with typical web site entry points (i.e., just the domain name), as 
they attempt to leverage the internal path structure of the URL.  
Future work needs to be done to further improve these features 
and to explore their correlations to find optimal sets for specific 
tasks. 

Classification by URL features has other advantages aside from 
real-time efficiency: all web pages have URLs, regardless of 
whether they exist, are accessible, have incoming links or have 
any text (some web pages are comprised solely of image maps).   
On the other extreme, many pages have too many words that 
contribute noise.  Employing text summarization to web pages 
has already shown to help in this process [14], and is a promising 
avenue for future work. Aside from its intrinsic performance, 
URL based classification can additionally be used to overcome 
the shortcomings of other methods that rely on these data.   
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