
THE NATIONAL UNIVERSITY OF SINGAPORE

School of Computing

Kent Ridge Road, Singapore 119260

TR A6/05

From Region Encoding To Extended Dewey: On

Efficient Processing of XML Twig Pattern Matching

Jiaheng LU, Tok Wang LING, Chee-Yong CHAN and Ting CHEN

{lujiahen,lingtw,chancy,chent}@comp.nus.edu.sg

June , 2005

1

TECHNICAL REPORT

Forward

This technical report contains a research paper, development or tutorial

article, which has been submitted for publication in a journal or for consider-

ation by the commissioning organization. The report represents the ideas of

its author, and should not be taken as the official views of the School or the

University. Any discussion of the content of the report should be sent to the

author, at the address shown on the cover.

JAFFAR, Joxan

Dean of School

2

From Region Encoding To Extended Dewey: On Effi-

cient Processing of XML Twig Pattern Matching

Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan and Ting Chen

National University of Singapore, Singapore

{lujiahen,lingtw,chancy,chent}@comp.nus.edu.sg

Abstract

Finding all the occurrences of a twig pattern in an XML database is a core operation for

efficient evaluation of XML queries. A number of algorithms have been proposed to process a

twig query based on region encoding labeling scheme. While region encoding supports efficient

determination of ancestor-descendant (or parent-child) relationship between two elements, we

observe that the information within a single label is very limited. In this paper, we propose a

new labeling scheme, called extended Dewey. This is a powerful labeling scheme, since from the

label of an element alone, we can derive all the elements names along the path from the root

to the element. Based on extended Dewey, we design a novel holistic twig join algorithm, called

TJFast. Unlike all previous algorithms based on region encoding, to answer a twig query, TJFast

only needs to access the labels of the leaf query nodes. Through this, not only do we reduce disk

access, but we also support the efficient evaluation of queries with wildcards in branching nodes,

which is very difficult to be answered by algorithms based on region encoding. Finally, we report

our experimental results to show that our algorithms are superior to previous approaches in terms

of the number of elements scanned, the size of intermediate results and query performance.

1 Introduction

With the rapidly increasing popularity of XML for data representation, there is a lot of interest in

query processing over data that conforms to a tree-structured data model. Since the data objects in

a variety of languages(e.g. XPath, XQuery) are typically trees, twig (a small tree) pattern matching

is the central issue.

In practice, XML data may be very large, complex and have deep nested elements. Thus,

efficiently finding all twig patterns in an XML database is a major concern of XML query processing.

3

In the past few years, many algorithms ([2],[5],[9],[10]) have been proposed to match such twig

patterns. These approaches (i) first develop a labeling scheme to capture the structural information

of XML documents, and then (ii) perform twig pattern matching based on labels alone without

traversing the original XML documents.

For solving the first sub-problem of designing a proper labeling scheme, the previous methods

use a tree-traversal order(e.g. extended preorder [11]) or textual positions of start and end tags

(e.g. region encoding [2]) or path expressions(e.g. Dewey ID [20]) or prime numbers (e.g. [23]). By

applying these labeling schemes, one can determine the relationship (e.g. ancestor-descendant) be-

tween two elements in XML documents from their labels alone. Although existing labeling schemes

preserve the positional information within the hierarchy of an XML document, we observe that the

information contained by a single label is very limited. As an illustration, let us consider the most

popular region encoding, where each label consists of a 3-tuple (start, end, level). Element a is

an ancestor of element b if and only if a.start<b.start and a.end>b.end. Given the labels of two

elements, one can identify the ancestor-descendant, parent-child relationship and their document

order, but no more information is provided.

In this paper, motivated by the existing Dewey ID [20], we propose a new powerful labeling

scheme, called extended Dewey ID (for short, extended Dewey). The unique feature of this scheme is

that, from the label of an element alone, we can derive the names of all elements in the path from the

root to this element. For example, Figure 1 shows an XML document with extended Dewey labels.

Given the label “0.5.1.1” of element text alone, we can derive that the path from the root to text is

“/bib/book/chapter/section/text”. An immediate benefit of this feature is that, to evaluate a twig

pattern, we only need to access the labels of elements that satisfy the leaf node predicates in the query.

Further, this feature enables us to easily match a path pattern by string matching. Take element

“0.5.1.1” as an example again. Since we see that its path is “/bib/book/chapter/section/text”, it is

quite straightforward to determine whether this path matches a path query (e.g. “//section/text”).

As a result, the extended Dewey labeling scheme provides us an extraordinary chance to develop a

new efficient algorithm to match a twig pattern.

For solving the second sub-problem of performing structural joins efficiently, several algorithms

have been developed to process twig queries. In particular, Bruno et al. [2] proposed the holis-

tic twig matching algorithms PathStack/TwigStack. For evaluating queries with only ancestor -

4

descendant(A-D) edges, TwigStack guarantees that each intermediate path solution contributes to

final answers. Lu et al.([12]) proposed TwigStackList to efficiently handle twig queries with parent-

child(P-C) relationships.

Wildcard steps in XPath are commonly used when element names are unknown or do not

matter([4]). Previous holistic twig matching algorithm is inefficient to answer queries with wildcards

in branching nodes. For example, consider the XPath: //a/*[b]/c. By reading the region encoding

of a, b and c, we cannot answer this query.1 How can we answer such queries efficiently?

In this paper, we propose a novel holistic twig join algorithm, called TJFast(i.e. a Fast Twig

Join algorithm) based on extended Dewey labeling scheme. To match a twig pattern, our algorithm

only scans elements for query leaf nodes. This feature brings us two immediate benefits:(i) TJFast

typically access much less elements than algorithms based on region encoding; and (ii) TJFast can

efficiently process queries with wildcards in internal nodes. We make the following contributions:

• We propose to enhance Dewey ID labeling scheme by incorporating element-name (i.e. node-

type) information. Our approach is based on using modulo function and a finite state trans-

ducer(FST) to derive the element names along a path.

• We develop a novel holistic twig join algorithm, called TJFast. When there are only A-D

relationships between branching nodes and their children, TJFast is I/O optimal among all

sequential algorithms that read the entire input. In other words, the optimality of TJFast

allows the existence of P-C relationships between non-branching nodes and the children.

• We perform a comprehensive experiment to demonstrate the benefits of our algorithms over

previous approaches.

Organization The rest of the paper proceeds as follows. We first discuss preliminaries in Section

2. The extended Dewey labeling scheme is presented in Section 3. We present TJFast algorithm in

Section 4. Section 5 is dedicated to our experimental results and we close this paper by the related

work and a conclusion.
1Note that even if b and c are descendants of a and their level difference with a is 2, b and c may not be query

answers, as they do not have the common parent.

5

level

author author title

book

chapter

"Suciu" "Chen" title section

"XML" texttitle

0

0.0 0.3 0.4 0.5

0.0.−1 0.3.−1 0.5.0 0.5.1

0.5.0.−1 0.5.1.0 0.5.1.1

keyword
0.5.1.1.1

book

bib
ε

chapterauthor

sectiontitle"..."

sectiontitle

title text

1

1.0 1.2

1.0.−1 1.2.11.2.0

1.2.1.0 1.2.1.1

1.2.1.1.11.2.1.1.0

1.1

title

3

4

5

0

1

2

Figure 1: An XML tree with extended Dewey labels

2 Preliminaries

2.1 Data model and XML twig pattern

We model XML documents as ordered trees. Queries in XML query languages make use of twig

patterns to match relevant portions of data in an XML database. The twig pattern node may be an

element tag, a text value or a wildcard ”*”. The query twig pattern edges are either parent-child

or ancestor-descendant edges. For convenience, we distinguish between query and data nodes by

using the term “node” to refer to a query node and the term “element” to refer to a data element

in a document.

Given a query twig pattern Q and an XML document D, a match of Q in D is identified by a

mapping from the nodes in Q to the elements in D, such that: (i) the query node predicates are

satisfied by the corresponding database elements, wherein wildcard ”*” can match any single tag;

and (ii) the parent-child and ancestor-descendant relationships between query nodes are satisfied

by the corresponding database elements. The answer to query T with n nodes can be represented

as a list of n-ary tuples, where each tuple (t1, · · · , tn) consists of the database elements that identify

a distinct match of T in D.

6

2.2 Dewey ID labeling scheme

Tatarinov et al.[20] propose Dewey ID labeling scheme to present the position of an element oc-

currence in an XML document. In Dewey ID, each element is presented by a vector: (i) the root

is labeled by a empty string ε; (ii) for a non-root element u, label(u)= label(s).x, where u is the

x-th child of s. Dewey ID supports efficient evaluation of structural relationships between elements.

That is, element u is an ancestor of element s if and only if label(u) is a prefix of label(s).

Dewey ID has a nice property: one can derive the ancestors of an element from its label alone.

For example, suppose element u is labeled “1.2.3.4”, then the parent of u is “1.2.3” and the grand-

parent is “1.2” and so on. With the knowledge of this property, we further consider that if the names

of all ancestors of u can be derived from label(u) alone, then XML path pattern matching can be

directly reduced to string matching. For example, if we know that the label “1.2.3.4” presents the

path “a/b/c/d”, then it is quite straightforward to identify whether the element matches a path

pattern (e.g. “//c/d”). Inspired by this observation, we develop an extended Dewey ID labeling

scheme which provides an extraordinary chance for us to design a new algorithm to match XML

path (and twig) pattern.

3 Extended Dewey and FST

In this section, we aim at extending Dewey ID labeling scheme to incorporate the element-name

information. A straightforward way is to use some bits to present the element-name sequence with

number presentation, followed by the original Dewey label. The advantage of this approach is

simple and easy to implement. However, as shown in our experiments in Section 5, this method

faces the problem of the large label size. In the following, we will propose a more concise scheme to

solve this problem. In particular, we first encode the names of elements along a path into a single

Dewey label. Then we present a Finite State Transducer(FST) to decode element names from this

label. For simplicity, we focus the discussion on a single document. The labeling scheme can be

easily extended to multiple documents by introducing document ID information.

7

<!ELEMENT emph (#PCDATA | bold | keyword | emph) *>

<!ELEMENT bib (book*)>

<!ELEMENT book (author+, title, chapter*) >

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT chapter (title, section*)>

<!ELEMENT section (title, (text | section)*)>

<!ELEMENT text (#PCDATA | bold | keyword | emph) *>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

Figure 2: DTD for XML document in Fig 1

3.1 Extended Dewey

The intuition of our method is to use modulo function to create a mapping from an integer to an

element name, such that given a sequence of integers, we can convert it into the sequence of element

names.

In the extended Dewey, we need to know a little additional schema information, which we call

a child names clue. In particular, given any tag t in a document, the child names clue is all

(distinct) names of children of t. This clue is easily derived from DTD, XML schema or other

schema constraint. For example, consider the DTD in Figure 2; the tag of all children of bib is only

book and the tags of all children of book are author, title and chapter. Note that even in the case

when DTD and XML schema are unavailable, our method is still effective, but we need to scan the

document once to get the necessary child names clue before labeling the XML document.

Let us use CT (t) = {t0, t1, · · · , tn−1} to denote the child names clue of tag t. Suppose there is

an ordering for tags in CT (t), where the particular ordering is not important. For example,in Fig

3, CT (book) = {author, title, chapter}. Using child names clues, we may easily create a mapping

from an integer to an element name. Suppose CT (t) = {t0, t1, · · · , tn−1} , for any element ei with

name ti, we assign an integer xi to ei such that xi mod n = i. Thus, according to the value of xi, it

is easy to derive its element name. For example, CT (book) = {author, title, chapter}. Suppose ei

is a child element of book and xi = 8, then we see that the name of ei is chapter, because xi mod

3 = 2. In the following, we extend this intuition and describe the construction of extended Dewey

8

labels.

The extended Dewey label of each element can be efficiently generated by a depth-first traversal

of the XML tree. Each extended Dewey label is presented as a vector of integers. We use label(u) to

denote the extended Dewey label of element u. For each u, label(u) is defined as label(s).x, where s

is the parent of u. The computation method of integer x in extended Dewey is a little more involved

than that in the original Dewey. In particular, for any element u with parent s in an XML tree,

(1) if u is a text value , then x = −1;

(2) otherwise, assume that the element name of u is the k-th tag in CT (ts) (k=0,1,...,n-1),

where ts denotes the tag of element s.

(2.1) if u is the first child of s, then x = k;

(2.2) otherwise assume that the last component of the label of the left sibling of u is y (at

this point, the left sibling of u has been labeled), then

x =





⌊ y
n

⌋ · n + k if (y mod n) < k;

⌈ y
n

⌉ · n + k otherwise.

where n denotes the size of CT (ts).

Example 3.1 Figure 1 shows an XML document tree that conforms to the DTD in Figure 2.

For instance, the label of chapter under book(“0”) is computed as follows. Here k = 2 (for chapter

is the third tag in its child names clue, starting from 0), y = 4 (for the last component of “0.4” is

4), and n=3, so y mod 3 = 1 < k. Then x = b4/3c ∗ 3 + 2 = 5. So chapter is assigned the label

“0.5”. ¤

We show the space complexity of extended Dewey using the following theorem.

Theorem 3.1 The extended Dewey does not alter the asymptotic space complexity of the original

one.

Proof: According to the formula in (2.2),it is not hard to prove that given any element s, the

gap between the last components of the labels for every two neighboring elements under s is no more

than |CT (ts)|. Hence, with the binary representation of integers, the length of each component i of

9

extended Dewey label is at most log2|CT (tsi)| more than that of the original Dewey. Therefore, the

length difference between an extended Dewey label with m components and an original one is at

most
∑m

i=1 log2|CT (tsi)|. Since m and |CT (tsi)| are small, it is reasonable to consider this difference

is a small constant. As a result, the extended Dewey does not alter asymptotic space complexity of

the original Dewey.

3.2 Finite state transducer

Given the extended Dewey label of any element, we can use a finite state transducer (FST) to

convert this label into the sequence of element names which reveals the whole path from the root to

this element. We begin this section by presenting a function F (t, x) which will be used to define

FST.

Definition 1. Let Z denotes the non-negative integer set and Σ denotes the alphabet of all

distinct tag names in an XML document T . Given an tag t in T , suppose CT (t) = {t0, t1, · · · , tn−1},
a function F (t, x): Σ× Z → Σ can be defined by F (t, x) = tk, where k= x mod n.

Definition 2. (Finite State Transducer) Given child names clues and an extended Dewey

label, we can use a deterministic finite state transducer (FST) to translate the label into a sequence

of element names. FST is a 5-tuple (I, S, i, δ, o), where (i) the input set I = Z ∪ {−1}; (ii) the

set of states S = Σ ∪ {PCDATA}, where PCDATA is a state to denote text value of an element;

(iii) the initial state i is the tag of the root in the document; (iv) the state transition function δ

is defined as follows. For ∀t ∈ Σ, if x = −1, δ(t, x) = PCDATA, otherwise δ(t, x) = F (t, x). No

other transition is accepted. (v) the output value o is the current state name. ¤

Example 3.2 Figure 3 shows the FST for DTD in Fig 2. For clarity, we do not explicitly

show the state for PCDATA here. An input of -1 from any state will transit to the terminating

state PCDATA. This FST can convert any extended Dewey label to an element path. For in-

stance, given an extended Dewey label “0.5.1.1”, using the above FST, we derive that its path is

“bib/book/chapter/section/text”. ¤

As a final remark, it is worth to note three points:(i) the memory size of the above FST is

quadratic to the number of distinct element names in XML documents, as the number of transition

10

mod 3=0

bib book

author

section emph

keywordtitle

chapter

bold

text
mod 1=0

mod 3=0

mod 3=1

mod 3=2

mod 2=1

mod 3=1

mod 3=2

mod 2=0
mod 3=0

mod 3=1
mod 3=2

mod 3=2

mod 3=2

mod 3=2

mod 3=0 m
od 3=

2 m
od

 3
=

0

mod 3 =1

mod 3=0

mod 3=1

Figure 3: A sample FST for DTD in Fig 2

in FST is quadratic in the worst case; and (ii) we allow recursive element names in a document

path, which is demonstrated as a loop in FST; and (iii) the time complexity of FST is linear in the

length of an extended Dewey label, but independent of the complexity of schema definition.

3.3 Properties of extended Dewey

In this section, we summarize the following five properties of extended Dewey labeling scheme.

1. [Ancestor Name Vision] Given any extended Dewey label of an element, we can know all

its ancestors’ names (including the element itself).

2. [Ancestor Label Vision] Given any extended Dewey label of an element a, we can know

all its ancestors’ label.

3. [Prefix relationship] Two elements have ancestor -descendant relationships if and only if

their extended Dewey labels have a prefix relationship.

4. [Tight Prefix relationship] Two elements a and b have parent-child relationships if and

only if their extended Dewey labels label(a),label(b) have a tight prefix relationship. That is: (i)

label(a) is a prefix of label(b); and (ii) label(b).length-label(a).length=1.

5. [Order relationship] Element a follows (or precedes) element b if and only if label(a) is

greater (or smaller) than label(b) with lexicographeical order.

Region encoding also can be used for determining ancestor-descendant, parent-child and order

relationships between two elements. But it cannot see the ancestors of an element and therefore

11

has not Properties 1 and 2. The original Dewey labeling scheme has Properties 2 to 5, but not

Property 1. The first is unique for extended Dewey. Note that Property 1 and 2 are of paramount

importance, since they provide us an extraordinary chance to efficiently process XML path (and

twig) queries. For example, given a path query a/b/c/d, according to the Ancestor Name and

Label Vision Property, we only need to read the labels of d to answer this query, which will

significantly reduce I/O cost of previous algorithms based on region encoding. In the next section,

we will use extended Dewey labels to design a novel and efficient holistic twig join algorithm, which

utilizes the above five properties.

4 Twig Pattern Matching

4.1 Path matching algorithm

It is quite straightforward to evaluate a query path pattern in our approach. According to the

Ancestor Name Vision property, we only need to scan the elements whose tags appear in leaf node of

query. For each visited element, we first use FST to reveal the element names along the whole path,

and then perform string matching against it. As a result, we evaluate the path pattern efficiently

by scanning the input list once and ensure that each output solution is our desired final answer.

When path queries contain only parent-child relationships within the path, the string-matching

can be processed very efficiently by simply comparing element names. When path queries contain

ancestor-descendant relationships or wildcards “*” , the queries can be processed by string-matching

with don’t care symbols. There are a rich set of algorithms on efficient string processing with don’t

care symbols. (e.g. [16] and [8]).

It is worth noting that the I/O cost of our approach is typically much smaller than that of

previous algorithms for path pattern matching (e.g. PathStack [2]), for we only scan labels for the

query leaf node, while they need to scan elements for all query nodes.

4.2 Twig matching algorithm

This section presents a holistic twig pattern join algorithm, called TJFast. We will first introduce

some data structures and notations.

12

4.2.1 Data Structures and Notations

Let q denote a twig pattern and pn denote a path pattern from the root to the node n∈q. In our

algorithms, we make use of the following query node operations: isleaf: Node → Bool; isBranching:

Node → Bool; leafNodes: Node → {Node}; directBranchingOrLeafNodes: Node → {Node}. leafN-

odes(n) returns the set of leaf nodes in the twig rooted with n. directBranchingOrLeafNodes(n)(for

short, dbl(n)) returns the set of all branching nodes b and leaf nodes f in the twig rooted with n

such that in the path from n to b or f(excluding n,b or f) there is no branching nodes. For example,

in the query Q1 of Fig 4, dbl(a)={b,c} and dbl(c)={f,g}.

Associated with each leaf node f in a query twig pattern there is a stream Tf . The stream

contains extended Dewey labels of elements that match the node type f . The elements in the

stream are sorted by the ascending lexicographical order. For example, “1.2” precedes “1.3” and

“1.3” precedes “1.3.1”. The operations over a stream Tf include current(Tf), advance(Tf) and

eof(Tf). The function current(Tf) returns the extended Dewey label of the current element in the

stream Tf . The function advance(Tf) updates the current element of the stream Tf to be its next

element. The function eof(Tf) tests whether we are in the end of the stream Tf . We make use of

two self-explanatory operations over elements in the document: ancestors(e) and descendants(e),

which return the ancestors and descendants of e, respectively (both including e).

Algorithm TJFast keeps a data structure during execution: a set Sb for each branching node

b. Each two elements in set Sb have an ancestor -descendant or parent-child relationship. So the

maximal size of Sb is no more than the length of the longest path in the document. Each element

cached in sets likely participates in query answers. Set Sb is initially empty.

4.2.2 TJFast

Algorithm TJFast, which computes answers to a query twig pattern q, is presented in Algorithm 1.

TJFast operates in two phases. In the first phase (line 1-9), some solutions to individual root-leaf

path patterns are computed. In the second phase (line 10), these solutions are merge-joined to

compute the answers to the query twig pattern.

Given the extended Dewey label of an element, according to the Ancestor Name Vision

property, it is easy to check whether its path matches the individual root-leaf path pattern. Thus,

13

Algorithm 1 TJFast
1: for each f ∈ leafNodes(root)

2: locateMatchedLabel(f)

3: endfor

4: while (¬end(root)) do

5: fact = getNext(topBranchingNode)

6: outputSolutions(fact)

7: advance(Tfact)

8: locateMatchedLabel(fact)

9: end while

10: mergeAllPathSolutions()

Procedure locateMatchedLabel(f)

/* Assume that the path from the root to element get(Tf) is n1/n2/ · · · /nk and pf denotes the path

pattern from the root to leaf node f */

1: while ¬((n1/n2/ · · · /nk matches pattern pf) ∧ (nk matches f)) do

2: advance(Tf)

3: end while

Function end(n)

1: Return ∀f ∈ leafNodes(n) → eof(Tf)

Procedure outputSolutions(f)

1: Output path solutions of current(Tf) to pattern pf such that in each solution s, ∀e ∈ s:(element

e matches a branching node b → e ∈ Sb)

14

Algorithm 2 getNext(n)
1: if (isLeaf(n)) then

2: return n

3: else

4: for each ni ∈ dbl(n) do

5: fi = getNext(ni)

6: if (isBranching(ni)
∧

empty(Sni))

7: return fi

8: ei = max{p|p ∈ MB(ni, n)}
9: end for

10: max = maxargi{ei}
11: min = minargi{ei}
12: for each ni ∈ dbl(n) do

13: if (∀e ∈ MB(ni, n) : e/∈ ancestors(emax))

14: return fi;

15: endif

16: end for

17: for each e ∈ MB(nmin, n)

18: if (e∈ ancestors(emax)) updateSet(Sn, e)

19: end for

20: return fmin

21: end if

Function MB(n, b)

1: if (isBranching(n)) then

2: Let e be the maximal element in set Sn

3: else

4: Let e = current(Tn)

5: end if

6: Return a set of element a that is an ancestor of e such that a can match node b in the path

solution of e to path pattern pn

Procedure clearSet(S, e)

1: Delete any element a ∈ S that is not any ancestor or descendant of e

Procedure updateSet(S, e)

1: clearSet(S,e)

2: Add e to set S

15

the key issue of TJFast is to determine whether a path solution can contribute to the solutions for

the whole twig. In the optimal case, we only output the path solution that is merge-joinable to

at least one solution of other root-leaf paths. Intuitively, if two path solutions can be merged, the

necessary condition is that they have the common element to match the branching query node. For

example, consider a simple query a[./b]/c and two path solution (a1, b1) and (a2, c1). Observe that

two solutions can be merged only if a1 = a2. Therefore, in TJFast, in order to determine whether

a path solution contributes to final answers, we try to find the most likely elements that match

branching nodes b and store them in the corresponding set Sb.

It is not difficult to understand the main procedure of TJFast(see Algorithm 1). In line 1-3, for

each stream, we use Procedure locateMatchedLabel to locate the first element whose path matches

the individual root-leaf path pattern. In line 5, we identify the next stream Tfact to be processed by

using getNext(topBranchingNode) algorithm, where topBranchingNode is defined as the branching

node that is an ancestor of all other branching nodes(if any). In line 6, we output some path

matching solutions in which each element that match any branching node b can be found in the

corresponding set Sb. We advance Tfact in line 7 and locate the next matching element in line 8.2

Algorithm getNext(see Algorithm 2) is the core function called in TJFast, in which we accomplish

two tasks. The first is to identify the next stream to process; and the second is to update the sets

Sb associated with branching nodes b, discussed as follows.

For the first task to identify the next processed stream, Algorithm getNext(n) returns a query

leaf node f according to the following recursive criteria (i) if n is a leaf node, return n(line 2);

else (ii) n is a branching node, then for each node ni∈ dbl(n), (1) if the current elements cannot

form a match for the subtree rooted with ni, we immediately return fi(line 7); (2) if the current

element from stream Tfi does not participate in the solution involving in the future elements in

other streams, we return fi(line 14); (3) otherwise we return fmin such that the current element

emin has the minimal label in all ei by lexicographical order(line 20).

For the second task, we update set eb. This operation is important, since the elements in eb

decides which path solution can be output in Procedure outputSolutions. In line 18 of Algorithm 2,
2Note that the second condition “nk matches f” in line 1 of locateMatchedLabel is necessary, which avoids outputting

duplicate solutions. For example, consider the element e with the path “a1/b1/c1/b2” and the path query “a/b”.

“a1/b1/c1/b2” can matches “a/b”, but this solution has been output by another element ends with b1.

16

before an element eb is inserted to the set Sb, we ensure that eb is an ancestor of (or equals) each

other element ebi to match node b in the corresponding path solutions.

g

cb

ed

a

f

1

2d1

e1f1

g1

a2

a1

b1

c

c

3

1

f1

g1

a2

e1

a1

b1

c1

a

d

(a)Q1 (b) Doc1 (c) Doc2

Figure 4: Example twig query and documents

Example 4.1 Consider Q1 and Doc1 in Fig 4(a-b). A subscript is added to each element in the

order of pre-order traversal for easy reference. There are three input streams Tb, Tf and Tg. Initially,

getNext(a) recursively calls getNext(b) and getNext(c) (for b, c ∈ dbl(a) in Q1). Since b is a leaf

node in Q1, getNext(b)=b. Observe that MB(f,c)={c1} and MB(g,c)={c1,c2}, So emax = g and

emin = f in line 10 and 11 of Algorithm 2. In line 18, c1 is inserted to set Sc. Then, getNext(c)=f .

Subsequently, a1 is inserted to Sa and getNext(a)=b. Finally path solutions (a1, b1),(a1, c1, d1, f1)

and (a1, c1, e1, g1) are output and merged. Note that although (a1, c2, e1, g1) matches the individual

path pattern a//c//e/g, it is not output for c2 6∈ Sc. ¤

Note that the second phase(line 10 of Algorithm 1) of TJFast can be performed efficiently, only

when the intermediate path solutions are output in sorted order. To achieve this purpose, we would

need to “block” some answers. The details of how to achieve this naturally in the scenario of TJFast

are described in the next section.

4.3 Blocking techniques

Consider the simple query and dataset in Fig 5 (a) and (b). When Algorithm TJFast scan B1

and C1 and insert A1, A2 to set SA , we cannot immediately output solutions < A2, B1 > and

< A2, C1 >. This is because there remains the possibility of a new element after B1 or C1 which

joins with A1 as long as A1 is in set SA. Therefore, we cannot output < A2, B1 > and < A2, C1 >

until A1 is deleted from the set. We now propose a procedure to guarantee the output path solutions

17

(b) Document

B1 B2 C1 C2

A3A2

A1

CB

A

B3 C3

(a) Query

Figure 5: An example of XML data that needs blocking

(
a
)

{
C
1
,
C
2
,
.
.
C
n
}

C

i
s

a

b
r
a
n
h
c
i
n
g

N
o
d
e

(
b
)

{
P
1
,
P
2
,
.
.
P
m
}

{
C
1
}

B
o
t
h

C

a
n
d

P

a
r
e

b
r
a
n
c
h
i
n
g

n
o
d
e
s

a
n
d

P

i
s

t
h
e

d
i
r
e
c
t

a
n
c
e
s
t
o
r

n
o
d
e

o
f

C

i
n

t
h
e

q
u
e
r
y
.

(
c
)

{
C
1
}

C

i
s

t
h
e

t
o
p

b
r
a
n
c
h
i
n
g

n
o
d
e

(
C
1
.
S

+

C
1
.
I
)

t
o

C
2
.
I

w
h
e
r
e

C
2

i
s

t
h
e

n
e
a
r
e
s
t

a
n
c
e
s
t
o
r

n
o
d
e

o
f

C
1

i
n

t
h
i
s

s
e
t

(
C
1
.
S

+

C
1
.
I
)

t
o

e
a
c
h

P
i
.
S

w
h
e
r
e

P
i

i
s

a
n

a
n
c
e
s
t
o
r

o
f

C
l

O
u
t
p
u
t

(
C
1
.
S

+

C
1
.
I
)

Figure 6: Possible set configuration when blocking results

are sorted, which is partly inspired by [2].

For this purpose, we maintain two lists associated with each element n in sets: the first, (S)elf-

list, represents all blocked solution with root element n , and the second (I)nherit- list, represents

all blocked solutions with root elements that are descendants of n. When an element n is inserted

to a set, for each stream Tq , we initialize a list for each n and q. At any point of the algorithm, we

do not directly output path solutions for any element, but add it to the Self-list of its responding

nearest branching node. For example, in Fig 5(a) and (b), we scan B1. Then add < A1, B1 > to

the Self-list of element A1 and < A2, B1 > to the Self-List of A2.

In particular, suppose we are deleting element C1 from the set. Depending on the current

configuration, we proceed as follows(see Fig 6):

• (a) Element C1 is not the only element in set, but has an ancestor C2 . In this case, we first

identify C2, which is the nearest ancestor of C1. Then we append the Self-list and Inherit-list

of C1 to the Inherit-list of element C2.

• (b) Node P is the nearest ancestor of node C. Element C1 is the only element in the set. In

18

(b) Document

A

B

C D

E F

A1

A2

B1

B2 D1

C1

E1 F1

(a) Query

Figure 7: Illustration to blocking

this case, we append the Self-list and Inherit-list of C1 to the Self-list of each element Pi ,

where Pi is an ancestor of C1.

• (c) Node C has no ancestor that is a branching node in query. Element C1 is the only element

in the set. In this case, we output the contents of the self-list and inherit-list of element C1.

Note that before the second phase of merge-join, unlike [2], our path solutions only involve in

elements that match branching nodes. After the path solutions are merged, we can easily extend

them to the full query solutions. This can be achieved because of the unique feature of extended

Dewey label. The benefit of this approach is to reduce the size of intermediate results. We use the

following two examples to illustrate the blocking techniques described above.

Example 4.2 Consider the query and data set in Fig 5 again. Initially, B1 and C1 are scanned.

We do not immediately output their path solutions, but add them to the respective Self-lists.

Subsequently, the path solutions of B2,C2 are also added to Self-lists. Then after B3 and C3 are

scanned, we delete A2 from its set. At this point, according to the rules in Fig 6(b), all elements

in the Self-list of A2 (here the Inherit-list of A2 is empty) are appended to the Inherit-list of A1.

Finally, when A1 is output from the set, all path solutions in the Self- and Inherit-lists of A1 are

sorted.

Example 4.3 Consider the query and data set in Fig 7. This example is used to illustrate that

before the final merge, the path solutions only include elements that match branching nodes and leaf

nodes. With the blocking technique of TJFast, we output three path solutions: < B1, C1, E1 > , <

B1, C1, F1 > and < B1, D1 >. Note that there is no node to match A. After we merge three solutions

19

to one solution < B1, C1, E1, F1, D1 >, we extend it to two final solutions < A1, B1, C1, E1, F1, D1 >,

< A2, B1, C1, E1, F1, D1 >. This can be achieved because we can derive the existence of A1 and A2

from the extended Dewey label of B1.

Now we analyze the I/O complexity of our method. The only operation we perform over lists

is “append” (except the final read out). We only need to access the tail of each list in memory as

computation proceeds. Each list page is thus paged out only once, and paged back in again only

when the list is ready for output. Therefore, the I/O cost required to maintain lists is proportional

to the size of the output, provided that there is enough memory to hold the tail of each list in

buffers.

4.4 Analysis of TJFast

Next, we first show the correctness of TJFast and then analyze its complexity.

Lemma 1. In Procedure clearSet of Algorithm TJFast, any element e that is deleted from set Sb

does not participate in any new solution.

Proof: Suppose that on the contrary, there is a new solution using element e. Since e has

not ancestor-descendant relationship with the new inserted element enew, according to the Order

Property, label(e)<label(enew) by lexicographical order. Note that if a<b and a is not a prefix of

b, then whatever postfix c, d is attached to a and b respectively, a.c<b.d holds. Therefore, label(e)

will not be a prefix of subsequent elements in any stream, which contradicts that e participates in

a new solution. ¤

Lemma 2. In line 18 of Function getNext, if element e /∈ ancestors(emax) and e /∈ Sn , then e is

guaranteed to not involve in any final solution.

Proof (Induction on the number of calls to getNext): Consider the first call to getNext

for branching node n. Observe that set Sn is empty before this call. Since element e is not a prefix

of emax, e cannot become a prefix of any element in stream Tfmax . Therefore e does not participate

in any final solution. For subsequent calls to getNext, we proceed as follows. Since element e is not

a prefix of emax, e cannot involve in the solutions of the future elements in stream Tfmax . So the

only possible case is that e participates in the solution for the previous elements. But now e does

20

not appear in set Sb. Then either e is never added into set Sb or it has been wrongly deleted from

set Sb. In the first case, according to the inductive hypothesis, element e does not participate in

any final solution. The second case is impossible, since by Lemma 1, each deletion operation is safe.

Therefore, the lemma is proved. ¤

Lemma 1 shows that any element deleted from sets does not participate in new solutions, so

the deletion is safe. Lemma 2 shows that for any element e that matches a branching node, if

e participates in any final answer, then e occurs in the corresponding set. Thus the insertion is

complete. The two lemmas are important to establish the correctness of the following theorem.

Theorem 1. Given a twig query q and an XML database D, Algorithm TJFast correctly returns

all the answers for q on D.

While the correctness holds for any given query, the I/O optimality holds only for the case where

there are only ancestor -descendant relationships between branching nodes and their children.

Theorem 2. Consider an XML database D and a twig query q with only ancestor-descendant

relationships between branching nodes and their children. The worst case I/O complexity of TJFast

is linear in the sum of the sizes of input and output lists. The worst-case space complexity is

O(d2 ∗ |b|+ d ∗ |f |), where |f | is the number of leaf nodes in q, |b| is the number of branching nodes

in q and d is the length of the longest label in the input lists.

Proof: We first prove the I/O optimality. The following observation is important to prove the

optimality of TJFast: if all branching edges are only ancestor -descendant relationships, then in line

18 of getNext, since e ∈ ancestors(emax), e ∈ MB(ni, n) for each ni ∈ dbl(n). That is, e is guaranteed

to be a common element in each current path solution. Note that we only output path solutions,

in which elements that match branching nodes occur in the corresponding set(line 6 of Algorithm

1). Therefore, each intermediate path solution output in TJFast is guaranteed to contribute to final

results when the query contains only ancestor -descendant relationships in branching edges.

As for space complexity, our result is based on the observation that in the worst case, the number

of elements in branching node set Sb is at most d, where d is the length of the longest label in the

input lists. Considering each extended Dewey label repeats its prefix, the total space complexity of

Sb is O(d2). ¤

21

Theorem 2 holds only for query with ancestor -descendant relationships to connect branching

nodes. Unfortunately, in the case where the query contains parent-child relationships between

branching nodes and their children, Algorithm TJFast is no longer guaranteed to be I/O optimal.

For example, consider a query a[./b]/c and a data tree consisting of a1, with children(in order) b1,

a2, c2, such that a2 has children b2, c1. There are two streams Tb, Tc in TJFast and their first

elements are b1 and c1 respectively. In this case, b1 and c1 are “locked” simultaneously, because we

cannot advance any stream before knowing if it participates in a solution. Thus, optimality can no

longer be guaranteed.

4.5 Comparison among TJFast, TwigStack and TwigStackList

In this section, we use the following example to illustrate the advantages of TJFast over TwigStack

and TwigStackList.

Example 4.2 Consider the query and data tree Doc2 in Fig 4(a) and (c). There are three input

streams Tb,Tf and Tg in TJFast. Initially, the current elements are b1,f1 and g1. TJFast does not

insert c1 to set Sc, since by reading the label of g1 alone, we immediately identify that g1 does

not contribute to query answers(for a1/a2/c1/e1/a3/g1 does not match a//c//e/g). In contrast,

TwigStack pushes c1 to stack Sc and outputs two “useless” intermediate path solution <a1, b1>

and <a1, c1, d1, f1>. The behavior of TwigStack is also reasonable because based on region coding

of g1, one cannot decide whether g1 has the parent tagged with e. But based on extended Dewey,

one can easily identify that the parent of g1 is tagged with a rather than e. This example shows the

benefit of extended Dewey labeling scheme on efficient processing of XML twig pattern matching.

Compared to TwigStack, TwigStackList looks more “clever”. In the above example, TwigStackList

does not hastily push c1 to stack , but first checks the parent-child relationship between e1 and g1.

Then they find that e1 is not the parent of g1. Then TwigStackList caches e1 in a list and reads

more elements in Te. In this simple case, e1 is the only element in stream Te. So unlike TwigStack,

TwigStackList does not output any useless intermediate results. Compared to TJFast, TwigStackList

is also I/O optimal in this example, but TwigStackList needs to read more elements from all non-

leaf node streams and its processing will be very complicated when g1 has more than one ancestor

tagged with e. (More examples about TwigStackList can be found in [12]) ¤

22

5 Experimental evaluation

5.1 Experimental setup

5.1.1 Testbed and Data set

We implemented four XML twig join algorithms: TJFast, TwigStack, TwigStackList and iTwigJoin

in JDK 1.4 using the file system as a simple storage engine. Only TJFast is based on extended

Dewey labeling scheme, and the other three use region encoding.

The reason that we choose these three algorithms for comparisons is that TwigStack, TwigStack-

List and iTwigJoin are efficient for different applications. TwigStack[2] is very efficient when query

contains only ancestor-descendant relationships. TwigStackList[12] is efficient on answering queries

with parent-child relationships. Finally, unlike the above two algorithms, which partition elements

to one stream according to their tags alone, iTwigJoin[5] is a general twig join algorithm, which can

be used on different data partition approaches. [5] researched two new data partitions: tag+level

and prefix path streaming (PPS). Such refined data partition strategies enable iTwigJoin to reduce

I/O cost by pruning irrelevant data streams.

All experiments were run on a 1.7G Pentium IV processor with 768MB of main memory and

2GB quota of disk space, running windows XP system. We use four different datasets, including

two synthetic and two real datasets. The first synthetic data is the well-known XMark benchmark

data (with factor 5). The second is a random data set. We used ten different labels, namely

A1,A2,...,A10. The node labels in the tree were uniformly distributed. The two real datasets are

DBLP and TreeBank[14]3. We choose these two datasets since they have different characteristics.

DBLP is a shallow and wide document, but TreeBank has very deep recursive structure. Table 1

summarizes their characteristics.

5.1.2 UTF-8 encoding

In our experiments, extended Dewey labels are not stored by the dotted-decimal strings displayed

(e.g. “1.2.3.4”), but rather a compressed binary representation. In particular, we used UTF-8
3Since there is no DTD available for TreeBank and random data, we first scan this document once to get the child

names clue of each tag.

23

Table 1: XML Data Sets (XM: XMark,TB:TreeBank)

XM Random DBLP TB

Data size(MB) 582 90 130 82

Nodes(million) 8 5.1 3.3 2.4

Max/Avg depth 12/5 10/5.1 6/2.9 36/7.8

Table 2: Labels size (XM: XMark,TB:TreeBank)

XM Random DBLP TB

Original Dewey(MB) 56.2 36.1 18.1 22.8

Region coding(MB) 71.9 45.2 21.6 23.3

Naive extension(MB) 92.9 55.8 27.7 41.9

Extended Dewey(MB) 72.6 43.3 19.5 28.7

encoding as an efficient way to present the integer value, which was proposed by Tatarinov et al.

[20]. Our experimental results show that compared to the naive implementation, where each integer

value is presented as a fixed number of bytes, the UTF-8 encoding can save about 50% space cost.

5.1.3 Labels size

We compare the labels size of four labeling schemes in Table 2. Our first conclusion is that the size

of the naive extension, which directly presents the element-name sequence in number presentation

ahead of the original Dewey labels, is generally larger than that of our extended Dewey labeling

scheme. Our second conclusion is that when the document tree is shallow and wide (i.e. DBLP),

the size of extended Dewey is smaller than that of region encoding. But while the document tree

is deep(i.e. TreeBank), the size of region encoding is smaller. This is because extended Dewey is a

variation of prefix labeling scheme, whose size is closely related to the average depth of documents.

Our third conclusion is that the size of extended Dewey is about 10%-30% more than that of original

Dewey. As we will show in our experiments, it is worth using this additional space-overhead, since

it significantly improves the performance of XML twig pattern matching.

24

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

PQ4PQ3PQ2PQ1

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(t

ho
us

an
d)

Query

PathStack
TJFast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

PQ4PQ3PQ2PQ1

D
is

k
fil

e
si

ze
 (

M
 b

yt
es

)

Query

PathStack
TJFast

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

PQ4PQ3PQ2PQ1

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

PathStack
TJFast

(a)Number of elements scanned (b) Size of disk files scanned (c) Execution time

Figure 8: PathStack versus TJFast using XMark data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1098765432

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query path length

PathStack
TJFast

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1098765432

D
is

k
fil

e
si

ze
 (

M
 b

yt
es

)

Query path length

PathStack
TJFast

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1098765432

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query path length

PathStack
TJFast

(a)Number of elements scanned (b) Size of disk files scanned (c) Execution time

Figure 9: PathStack versus TJFast using random data

5.2 Performance Analysis

5.2.1 Path Queries

In the first experiment, we compare our algorithm TJFast with the previous work PathStack to

match path pattern without branching nodes. For this purpose we first use XMark benchmark data

and four path queries4 shown in Table 3. Figure 8(c) shows the execution time for two algorithms.

We also show the number of elements scanned and the size of disk files read by two algorithms in

Figure 8(a)(b).

An immediate observation from the figures is that TJFast is more efficient than PathStack. In

particular, PathStack could perform 400% more disk I/Os than those required by TJFast (e.g. PQ2).

In order to research the effect of query path length on TJFast and PathStack, we then used the

random data set consisting of ten different labels A1,A2,...,A10, and issue path queries of different

lengths such as A1/A2/.../A10. Figure 9 shows the execution times of both techniques, as well as
4We choose these queries according to XMark benchmark queries in [18].

25

Table 3: Path Queries on XMark data

Path Query

PQ1 /site/closed auctions/closed auction/price

PQ2 /site/regions//item /location

PQ3 /site/people/person/gender

PQ4 /site/open auctions/open auction/reserve

the number of elements read and the size of disk files. Clearly, TJFast results in considerably better

performance than PathStack. The performance of PathStack degrades significantly with the increase

of the path length, but that of TJFast is almost not affected at all.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

TQ2TQ1

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

TwigStack
TwigStackList

TJFast

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

TQ2TQ1

D
is

k
fil

e
si

ze
 (

M
 b

yt
es

)

Query

TwigStack
TwigStackList

TJFast

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

TQ2TQ1

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Query

TW-SS
TwigStack

TwigStackList
TJ-SS
TJFast

(a)Number of elements scanned (b) Size of disk files scanned (c) Execution time

Figure 10: TwigStack,TwigStackList versus TJFast on DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

TQ5TQ4TQ3

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(M

ill
io

n)

Query

TwigStack
TwigStackList

TJFast

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

TQ5TQ4TQ3

D
is

k
fil

e
si

ze
 (

M
 B

yt
es

)

Query

TwigStack
TwigStackList

TJFast

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

TQ5TQ4TQ3

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Query

TW-SS
TwigStack

TwigStackList
TJ-SS
TJFast

(a)Number of elements read (b) Size of disk files scanned (c) Execution time

Figure 11: TwigStack,TwigStackList, TJFast on TreeBank

5.2.2 Twig Queries

We now focus on twig queries, and compare four holistic twig join algorithms TwigStack, TwigStack-

List, iTwigJoin and TJFast, We tested several XML queries on DBLP , TreeBank and XMark data(see

26

 0

 0.5

 1

 1.5

 2

 2.5

TQ7TQ6

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

TwigStack
TwigStackList

TJFast

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

TQ7TQ6

D
is

k
fil

e
si

ze
 (

M
 b

yt
es

)

Query

TwigStack
TwigStackList

TJFast

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

TQ7TQ6

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Query

TwigStack
TwigStackList

TJFast

(a)Number of elements read (b) Size of disk files scanned (c) Execution time

Figure 12: TwigStack,TwigStackList, TJFast on XMark

Table 4: Twig Queries on DBLP and TreeBank(TB)

Twig Data Query

TQ1 DBLP //inproceedings//title[.//i]//sup

TQ2 DBLP //article[.//sup]//title//sub

TQ3 TB /S[.//VP/IN]//NP

TQ4 TB /S/VP/PP[IN]/NP/VBN

TQ5 TB //VP[DT]//PRP DOLLAR

TQ6 XMark //text[bold]/text//emph

TQ7 XMark //listitem[.//bold]/text[.//emph]/keyword

Table 4). These queries have different twig structures and combinations of parent-child and ancestor-

descendant relationships. In particular, queries TQ1,TQ2 contain only ancestor-descendant relation-

ships, while TQ4 contains only parent-child relationships. TQ3 contains only ancestor-descendant

relationships between the branching node and its children, but TQ5,TQ6,TQ7 contains both parent-

child and ancestor-descendant relationships to connect the branching node.

TJFast vs. TwigStack We first compare the performance between TJFast and TwigStack.

From Figure 10 , 11 and 12, we see that TJFast outperforms TwigStack for all queries. We now

analyze the query performance under two scenarios namely the cost of disk access and the size of

intermediate results.

Cost of disk access Figure 10(a) and 11(a) ,12(a) show that TJFast read far fewer elements

than TwigStack. For example, in TQ1, TwigStack read 442167 elements, but TJFast read only 2380

elements (over two orders of magnitude). This huge gap results from the fact that TwigStack scans

27

the elements for all nodes in the query, but TJFast scans only elements for leaf nodes. Figure

10(c) and 11(c) also show the elapsed time TwigStack and TJFast take to do a sequential scan over

the input data (labels as TW-SS and TJ-SS, for TJFast, TJ-SS has included the time for decoding

extended Dewey labels).

Size of intermediate results Table 5 shows the number of intermediate path solutions output by

different algorithms. The last column is the number of intermediate solutions that contribute to final

answers. An immediate observation is that TwigStack outputs many “useless” path solutions when

query contains parent-child edges. For example, in TQ3, TwigStack produced 702391 intermediate

paths, while only 22565 are useful. More than 95% intermediate solutions output by TwigStack are

“useless” to the final answers. Note that, unlike TwigStack, TJFast is optimal for queries TQ3, since

the number of paths produced by TJFast is 22565, which equals the number of useful solutions.

Table 5: Number of intermediate path solutions

Query TwigStack TwigStackList TJFast Useful

TQ3 702391 22565 22565 22565

TQ4 2237 388 388 302

TQ5 10663 9 9 5

TJFast vs. TwigStackList For all queries, TJFast outperforms TwigStackList again (see Fig

10,11,12). This can be explained by the fact that TJFast reduces the I/O cost of TwigStackList by

reading labels of only leaf nodes.

When queries contain parent-child relationships between the branching node and its children

(i.e. queries TQ4,TQ5), both TwigStackList and TJFast are sub-optimal. Their sub-optimality is

evident from the observation that the number of intermediate path solutions by TwigStackList and

TJFast is slightly larger than the number of useful solutions.

TJFast vs. iTwigJoin We now compare the performance between TJFast, iTwigJoin and

iTwigJoin is also based on region encoding, but it can be applied on different data partition strategies.

Since [5] proposed two new data partition strategies (i.e. tag+level and PPS), we compare both

with TJFast (labeled as iTwigJoin-TL and iTwigJoin-PPS, respectively).

Performance results and the number of elements read for iTwigJoin-TL , iTwigJoin-PPS and

28

TJFast on DBLP and TreeBank data are shown in Figure 13 and 14,15. Since [5] has shown that

PPS is not applicable to deep recursive data, for TreeBank, we only compared iTwigJoin-TL with

TJFast. As shown in these figures, we can see that for all queries, TJFast is again more efficient

than iTwigJoin-TL and iTwigJoin-PPS. Although iTwigJoin uses the refined data partition strategies

and scan less elements than TwigStack and TwigStackList, the number of elements processed by

iTwigJoin is still more than that by TJFast.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65

TQ2TQ1

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

iTwigJoin-TL
iTwigJoin-PPS

TJFast

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

TQ2TQ1

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

iTwigJoin-TL
iTwigJoin-PPS

TJFast

(a) # of elements read (b) Execution time

Figure 13: iTwigJoin,TJFast on DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

TQ5TQ4TQ3

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

iTwigJoin-TL
TJFast

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

T Q5TQ4TQ3

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

iTwigJoin-TL
TJFast

(a) # of elements read (b) Execution time

Figure 14: iTwigJoin,TJFast on TreeBank

5.2.3 Wildcards Query

Finally, we tested two wildcards queries Q1://NP[.//CD]/*/V, Q2://VP/*[PP-8]/PP-7 in TreeBank

dataset. Q1 is a twig query consisting of a wildcard in a non-branching node, but Q2 is a branching

wildcard twig query. For Q1, all four algorithms can be applied (with little modification for those

algorithms on region encoding). But the performance of TJFast is much better than the best

29

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

TQ7TQ6

N
um

be
r

of
 e

le
m

en
ts

 r
ea

d
(m

ill
io

n)

Query

iTwigJoin-TL
iTwigJoin-PPS

TJFast

 0

 10

 20

 30

 40

 50

TQ2TQ1

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

iTwigJoin-TL
iTwigJoin-PPS

TJFast

(a) # of elements read (b) Execution time

Figure 15: iTwigJoin,TJFast on XMark

algorithms on region encoding5(0.9s vs. 7.2s). For Q2, the family of algorithms on region encoding

are significantly affected by wildcards in branching nodes, as they do not know which elements can

be used to match this wildcard. Since there is no DTD available for TreeBank data, a brute-force

solution is to access all elements to answer this query. Clearly, this method is unacceptably slow.

In contrast, the existence of wildcard in branching nodes does not affect TJFast, which takes 0.3s

to answer Q2. This shows that TJFast supports efficient processing of both non-branching as well

as branching wildcard queries. Note that, in Q2, TwigStack, TwigStackList and iTwigJoin cannot

scan only VP,PP-8,PP-7 to answer this query. This is because according to region encoding, even if

PP-8 and PP-7 are descendants of VP and their level difference with VP is 2, PP-8 and PP-7 may

not share the common parent.

Summary TJFast significantly outperforms TwigStack, TwigStackList and iTwigJoin under

all settings (including shallow and deep documents, path and twig queries, branching and non-

branching wildcards queries). The improvement is due to the facts that TJFast only scans labels for

query leaf nodes. Algorithms on region encoding are comparable to TJFast only when the number

of elements for all internal query nodes is very small.

6 Related work

Labeling schemes Dewey ID labeling scheme comes from the work of Tatarinov et al.[20]

to represent XML order in the relational data model, and to show how this labeling scheme can
5In this case the best algorithm on region encoding is iTwigJoin-TL.

30

be used to preserve document order during XML query processing. O’Neil et al.[15] introduced a

variation of prefix labeling scheme called ORDPATH. Unlike our extended Dewey, the main goal of

ORDPATH is to gracefully handle insertion of XML nodes in the database.

The region encoding is considered as the work of Consens and Milo[7], who discuss a fragment

of PAT text searching operators for indexing text database. Then Zhang et al[25] introduce it to

XML query processing using inverted list. Recently, many researchers ([3],[19],[23]) have begun to

design a dynamic XML labeling scheme on the context of frequent inserting and deleting data.

Twig join algorithms Al-Khalifa et al.[1] started the stack-based algorithms for XML struc-

tural joins. N. Bruno et al. [2] proposed a holistic twig join algorithm, namely TwigStack. Lu et

al.[12] proposed TwigStackList, which identifies a larger optimal query class than TwigStack. Lu

et al.[13] also researched how to answer an ordered twig pattern based on region encoding. Chen

et al.[5] proposed an algorithm iTwigJoin, which is still based on region encoding. But unlike the

previous work, iTwigJoin can be applied on different data partition strategies (e.g. Tag+Level and

prefix Path Streaming).

Jiang et al. [9] proposed a general algorithm called TSGeneric+ based on indexes built on

element labels. Their method can “jump” elements and achieve sub-linear performance for selective

queries. But for evaluating queries with parent-child relationships, TSGeneric+ still may output

many “useless” intermediate results like TwigStack. Jiang et al.[10] also studied the problem of

processing queries with OR predicates. BLAS by Chen et al. [6] proposed a bi-labelling scheme: D-

Label and P-Label for accelerating parent-child relationship processing. Their method decomposes

a twig pattern into several parent-child path queries and then merges the results.

Yang et al. [24] proposed the idea of the combination of path index table and Dewey labels.6

Similar to our TJFast, to answer a twig query, their method also can reduce I/O cost by accessing

only the labels of leaf query nodes. But unlike TJFast, their algorithm did not fully explore the nice

property of Dewey labels and only modified one procedure in TSGeneric+. So similar to TSGeneric+,

their algorithm is still not efficient for processing queries with parent-child relationships.

ViST and PRIX ([22],[17]) transform both XML data and queries into sequences and answer

XML queries through subsequence matching. While their methods avoid join operations in query
6Note that our work are developed independently of and differs considerably with [24].

31

processing, to eliminate false alarm and false dismissal, they resort to post-processing(for false

alarm) and multiple isomorphism queries processing([21])(for false dismissal), both of which are

time consuming.

Wildcards queries Chan et al. [4] used layer axis to minimize wildcards steps. Although their

methods can replace wildcards by layer axis, in the scenario of XML twig pattern matching for a

large document, the efficient evaluation of layer axis is still an issue.

7 Conclusions and Future Work

XML twig pattern matching is a key issue for XML query processing. In this paper, we have

proposed TJFast as an efficient algorithm to address this problem using a novel labeling scheme:

extended Dewey. Although the idea of original Dewey is not new, extending it to efficiently process

XML twig pattern matching is nontrivial. This is because based on the original Dewey, we cannot

know the element names along a path. To answer a twig query, we need to access the labels of all

query nodes. Considering the fact that prefix comparison is less efficient than integer comparison,

the performance of algorithm with the original Dewey is usually worse than that with region en-

coding. However, owing to our extension, extended Dewey has the important property: Ancestor

Name Vision. So TJFast only needs to access labels of leaf nodes to answer queries and signifi-

cantly reduce I/O cost. Further, TJFast can efficiently evaluate branching wildcards queries, which

cannot be handled by algorithms with region encoding. As part of future work, we would like to

improve extended Dewey to become an insert-friendly labeling scheme in the context of dynamic

XML trees.

References

[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava. Structural joins: A

primitive for efficient XML query pattern matching. In Proc. of ICDE Conference, pages 141–152, 2002.

[2] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: optimal XML pattern matching. In

SIGMOD Conference, pages 310–321, 2002.

[3] B. Catania, B. C. Ooi, W. Wang, and X. Wang. Lazy xml updates: Laziness as a virtue of update and

structural join efficiency. In SIGMOD, To appear 2005.

32

[4] C. Y. Chan, W. Fan, and Y. Zeng. Taming xpath queries by minimizing wildcard steps. In Proceeding

of VLDB, pages 156–167, 2004.

[5] T. Chen, J. Lu, and T. W. Ling. On boosting holism in xml twig pattern matching using structural

indexing techniques. In SIGMOD, pages 455–466, 2005.

[6] Y. Chen, S. B. Davidson, and Y. Zheng. BLAS: An efficient XPath processing system. In Proc. of

SIGMOD, pages 47–58, 2004.

[7] M. P. Consens and T. Milo. Optimizing queries on files. In SIGMOD, pages 301–312, 1994.

[8] G. H. Gonnet. The PAT text searching sytem. Technical report, University of Waterloo, 1987.

[9] H. Jiang et al. Holistic twig joins on indexed XML documents. In Proc. of VLDB, pages 273–284, 2003.

[10] H. Jiang, H. Lu, and W. Wang. Efficient processing of XML twig queries with OR-predicates. In Proc.

of SIGMOD Conference, pages 274–285, 2004.

[11] Q. Li and B. Moon. Indexing and querying XML data for regular path expressions. In Proc. of VLDB,

pages 361–370, 2001.

[12] J. Lu, T. Chen, and T. W. Ling. Efficient processing of xml twig patterns with parent child edges: a

look-ahead approach. In CIKM, pages 533–542, 2004.

[13] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni. Efficient processing of ordered XML twig pattern matching.

In DEXA To appear, 2005.

[14] U. of Washington XML Repository. http://www.cs.washington.edu/research/xmldatasets/.

[15] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs: Insert-friendly XML

node labels. In SIGMOD, pages 903–908, 2004.

[16] R. Y. Pinter. Efficient string matching with don’t care patterns. In Combinatorial ALgorithms on

Words, NATO ASI Series, volume 12, pages 11–29, 1985.

[17] P. Rao and B. Moon. PRIX: Indexing and querying XML using prufer sequences. In ICDE, pages

288–300, 2004.

[18] A. R. Schmidt et al. Xmark an xml benchmark project. http://monetdb.cwi.nl/xml/index.html.

[19] A. Silberstein, H. H. nd K. Yi, and J. Yang. Boxes: Efficient maintenance of order-based labeling for

dynamic XML data. In Proc. of ICDE., pages 285–296, 2005.

[20] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang:. Storing and

querying ordered XML using a relational database system. In Proc. of SIGMOD, pages 204–215, 2002.

33

[21] H. Wang and X. Meng. On the sequencing of tree structures for XML indexing. In ICDE, pages 372–383,

2005.

[22] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A dynamic index method for querying XML data by

tree structures. In SIGMOD, pages 110–121, 2003.

[23] X. Wu, M. Lee, and W. Hsu. A prime number labeling scheme for dynamic ordered XML trees. In Proc.

of ICDE, pages 66–78, 2004.

[24] B. Yang, M. Fontoura, E. J. Shekita, S. Rajagopalan, and K. S. Beyer. Virtual cursors for XML joins.

In CIKM, pages 523–532, 2004.

[25] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On supporting containment

queries in relational database management systems. In Proc. of SIGMOD Conference, pages 425–436,

2001.

34

