
THE NATIONAL UNIVERSITY
OF SINGAPORE

School of Computing
Computing 1, 13 Computing Drive, Singapore 117417

TRB6/13

Graph Minor Approach for Application Mapping
on CGRAs

Liang Chen and Tulika Mitra

JUNE 2013



Technical Report

Forword

This technical report contains a research paper, development or tutorial

article, which has been submitted for publication in a journal or for con-

sideration by the commissioning organization. The report represents the

ideas of its author, and should not be taken as the official views of the

School or the University. Any discussion of the content of the report

should be sent to the author, at the address shown on the cover.

OOI Beng Chin

Dean of School



Abstract
Coarse-Grained Reconfigurable Arrays (CGRAs) exhibit high performance, improved

flexibility, low cost, and power efficiency for various application domains. Compute-

intensive loop kernels, which are perfect candidates to be executed in CGRAs, are mapped

through modified modulo scheduling algorithms. These algorithms should be capable of

performing both placement and routing. We formalize the CGRA mapping problem as a

graph minor containment problem. We essentially test if the data flow graph representing

the loop kernel is a minor of the modulo routing resource graph representing the CGRA

resources and their interconnects. We design an exact graph minor testing approach that

exploits the unique properties of both the data flow graph and the routing resource graph to

significantly prune the search space. We introduce additional heuristic strategies that drasti-

cally improve the compilation time while still generating optimal or near-optimal mapping

solutions. Experimental evaluation confirms the efficiency of our approach.

1 Introduction

Coarse-Grained Reconfigurable Arrays (CGRAs) are promising alternatives between ASICs and

FPGAs. Traditionally in embedded systems, compute intensive kernels of an application are

implemented as ASICs, which have high efficiency but limited flexibility. Current generation

embedded systems demand flexibility to support a diverse range of applications. FPGAs provide

high flexibility, but may suffer from low efficiency [26]. To bridge this gap, CGRA architectures

have been proposed such as CHESS [31], MorphoSys [40], ADRES [32], DRAA [29], FloRA

[28] and many others. Typically these architectures arrange coarse-grained functional units

(FUs) in a mesh-like structure. The FUs can be reconfigured by writing to a control register

(context register) on per cycle basis. Figure 1 shows a 4×4 mesh-like CGRA; each FU has a

local register file and a configuration cache.
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Figure 1: A 4×4 CGRA

The compute-intensive loop kernels are perfect candidates to be mapped to CGRAs con-

taining multiple FUs targeting high instruction-level parallelism. A number of CGRA mapping

algorithms [33, 6, 4, 22, 16, 12, 17] are inspired by compilation techniques for VLIW archi-

tectures as well as FPGA synthesis. For example, CGRA mapping algorithms adopt placement

and routing techniques from FPGA synthesis domain and software pipelining based techniques

such as modulo scheduling from VLIW compilation process. It is important to note that the

inherent structure of the CGRAs is very different from both FPGAs and VLIW architectures.

More concretely, the connectivity among the functional units in CGRAs is usually fixed unlike

FPGAs where the interconnections can be reconfigured. Thus the mapping algorithms based

on FPGA place and route techniques may find it challenging to identify feasible routing paths

in fixed interconnect structure of CGRAs. Similarly, unlike VLIW architectures where all the

FUs typically share a common register file, the FUs in most CGRAs have limited and explicit

connections to the register files. Thus it is not prudent to perform register allocation as a post-

processing step as is commonly done in VLIW scheduling. Instead, register allocation should

be integrated in the early stage with scheduling (place and route) to achieve quality mapping.
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Figure 2: Subgraph Homeomorphism versus Graph Minor formulation of CGRA mapping prob-

lem.

In this work, we focus on developing an efficient CGRA mapping algorithm that gener-

ates high quality solution with fast compilation time. To first formalize the CGRA mapping

problem, we notice that a number of recent works [41, 3, 7, 17, 18] in the literature follow a

subgraph homeomorphism [15] formalization. The idea is to test if the data flow graph (DFG)

representing the loop kernel is subgraph homeomorphic to the modulo resource routing graph

(MRRG) representing the CGRA resources and their interconnects. Homeomorphism formula-

tion allows subdivision of the DFG edges when being mapped onto the MRRG, i.e., a DFG edge

can be mapped as a chain of edges (path) on the MRRG. Alternatively, additional vertices on a

path consisting of a chain of edges on the MRRG can be smoothed out to create a single DFG

edge. The additional nodes by sub-divisions model the routing of data from the source to the

target FUs if they are not connected directly. However, subgraph homeomorphism requires the

edge mappings to be node-disjoint (except at end points) or edge-disjoint [15]. While subgraph

homeomorphism provides an elegant formulation of the CGRA mapping problem, it excludes

the possibility of sharing the routing nodes among single source multiple target edges [36] (also

called multi-net [12]) leading to possible wastage of precious routing resources.

Figure 2 illustrates subgraph homeomorphism formulation. Figure 2(a) shows a simple DFG

(for simplicity we have removed the loop back edge) being mapped onto a 2x2 homogeneous

mesh CGRA shown in Figure 2(b). The DFG is homeomorphic to the subgraph of the MRRG

shown in Figure 2(c) and thus the subgraph represents a valid mapping (again for simplicity we

have removed additional nodes of the MRRG). In this homeomorphic mapping, edges (1,3) and

(1,4) have been routed through three additional routing nodes marked by R. Notice that each

routing node has degree 2 and has been added through edge subdivision (marked by dashed

edges). Alternatively, the routing nodes in the MRRG subgraph can be smoothed out to obtain

the original DFG. As mentioned earlier, by definition, edge subdivision cannot support route

sharing.

In contrast, we model the CGRA mapping problem as graph minor containment problem

which can explicitly model route sharing. A graph H is a minor of graph G if H can be

obtained from a subgraph of G by a (possibly empty) sequence of edge contractions [38]. In

graph theory, an edge contraction removes an edge from a graph while simultaneously merging

the two vertices it previously connected. In our context, we need to test if the DFG is a minor of

the MRRG, where the edges to be contracted represent the routing paths in the MRRG. Unlike

edge subdivision (or its reverse operation smoothing), edge contractions are not restricted to

simple paths. Thus graph minor formalism naturally allows for route sharing. Figure 2(d)

shows a mapping under graph minor approach. It is a subgraph of the MRRG from which the

DFG can be derived through two edge contractions as shown in Figure 2(e)-(f). In this example,

we reduce the number of routing nodes from 3 (in subgraph homeomorphism mapping) to 2 (in

graph minor mapping). While it is possible to support route sharing in [36, 12], we provide
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a clear formalization of the CGRA mapping problem under route sharing. This formalization

enables us to propose a customized exact graph minor containment testing approach that fully

exploits the structure of the DFG and the CGRA interconnects to effectively navigate and prune

the mapping alternatives.

In parallel to our graph minor formalization [9] for CGRA mapping problem, [20] pro-

posed graph epimorphism formalization for the same problem. Their approach, called EPIMap,

is quite elegant and models the novel concept of re-computation in addition to route sharing.

Re-computation allows for the same operation to be performed on multiple FUs if it leads to

better routing. In EPIMap approach, the DFG H is morphed into another graph H ′ (through

introduction of routing/re-computation nodes and other transformations) such that there exists

subgraph epimorphism from H ′ to H (many to one mapping of vertices from H ′ to H and adja-

cent vertices in H ′ map to adjacent vertices in H). Then EPImap attempts to find the maximal

common subgraph (MCS) between H ′ and the MRRG graph G using standard MCS identifi-

cation procedure. If the resulting MCS is isomorphic to H’, then a valid mapping has been

obtained; otherwise H is morphed differently in the next iteration and the process repeats.

The key difference with our approach is that while we develop a customized graph minor

testing procedure that exploits structural properties of our graphs, EPIMap relies on off-the-shelf

MCS identification algorithm. This can potentially lead to faster compilation time for graph

minor approach. Both approaches introduce heuristics to manage the computational complexity;

the transformation of the DFG as well as MCS identification require heuristics in EPIMap, while

graph minor approach restricts the subgraph mapping choices. Thus, the quality of the solutions

in both approaches depend on the loop kernel and the underlying CGRA architecture. On the

other hand, the re-computation concept in EPIMap enables additional scheduling and routing

options that can potentially generate better quality solutions for certain kernels. Finally, graph

epimorphism and graph minor are quite unrelated concepts even though a detailed discussion

on this topic is out of scope here. Instead, we provide quantitative comparison of the two

approaches in Section 6.

The concrete contributions of this paper are as follows. We observe that the CGRA map-

ping problem in the presence of route sharing can be formulated as a graph minor containment

problem. This allows us to develop a systematic and customized mapping algorithm that di-

rectly works on the input DFG and MRRG to explore the inherent structural properties of the

two graphs during the mapping process. Experimental results confirm that our graph minor

approach can achieve high quality schedules with minimal compilation time.

In the following, we will first discuss the existing approaches for CGRA mapping problem

in Section 2. Backgrounds of modulo scheduling in CGRA mapping problem are provided

in Section 3. We then formalize the CGRA mapping problem as a graph minor containment

problem in Section 4. The proposed graph minor testing algorithm will be detailed in Section

5. Experimental evaluations comparing our graph minor approach with different techniques are

presented in Section 6.

2 Related work

Mapping a compute-intensive loop kernel of an application to CGRAs using modulo scheduling

was first discussed in [33]. In this simulated annealing based approach, the cost function is

defined according to the number of over-occupied resources. The simulated annealing approach

can have long convergence time, especially for large dataflow graphs. Routing through register

files and register allocation problems are further explored in [12], which extends the work in

[33]. Register allocation is achieved by constraining the register usage during the simulated

annealing place and route process. The imposed constraint is adopted from meeting graph

[14] for solving loop cyclic register allocation in VLIW processors. In post routing phase, the

registers are allocated by finding a Hamilton circuit in the meeting graph, which is solved as a
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traveling salesman problem [12]. This technique is specially designed for CGRAs with rotating

register files. [22] also follows the simulated annealing framework but aims at finding better cost

functions for overused resources. SPR [16] is a mature CGRA mapping tool that successfully

combines the VLIW style scheduler and FPGA placement and routing algorithms for CGRA

application mapping. It consists of three individual steps namely scheduling, placement, and

routing. The placement step of SPR also uses the simulated annealing approach.

List scheduling has been adopted in [6, 5, 4], which analyzes priority assignment heuristics

under different network traversal strategies and delay models. The heuristics utilize the inter-

connect information to ensure that data dependent operations can be mapped spatially close to

each other. [35] also gives priorities for operations and resources to obtain a quality sched-

ule. The priorities are assigned according to the importance of routing from producer nodes to

consumer nodes. This idea is further exploited in edge-centric modulo scheduling (EMS) [36],

where the primary objective is routing efficiency rather than operation assignments. The quality

of a mapping using specific priorities highly depends on efficient heuristics for assigning these

priority values to both operations and resources.

There are various approaches to CGRA mapping using techniques from graph theory do-

main. [10] integrates subgraph isomorphism algorithm to generate candidate mapping between

a DFG and the resource graph of a coarse-grained accelerator. The reconfigurability and addi-

tional routing features are not considered. SPKM [43, 44] adopts the split and push technique

[13] for planar graph drawing and focuses on spatial mappings for CGRAs, where the reconfig-

urability is not supported. The mapping in SPKM starts from an initial drawing where all DFG

nodes reside in the same group. One group represents a single functional unit. The group is

then split into two and a set of nodes are pushed to the newly generated group. The split process

continues till each group contains only one node, which represents a one-to-one mapping from

DFG to the planar resource graph of CGRA. Different from these techniques, in our graph minor

framework, reconfigurability is fully supported.

A number of CGRA mapping approaches follow the subgraph homeomorphism formaliza-

tions including [41, 3, 7, 17, 18]. The mapping algorithm in [41] is adapted from MIRS [45],

a modulo scheduler capable of instruction scheduling with register constraints. The adapta-

tions for CGRA mapping include a cost function for routing and considerations for conditional

branches. [3] partitions the DFG into substructures called HyperOps and these HyperOps are

synthesized into hardware configurations. The synthesis is carried out through a homeomorphic

transformation of the dependency graph of each HyperOp onto the resource graph. [7] also

formalizes the CGRA mapping as a subgraph homeomorphism problem. However, they con-

sider general application kernels rather than loops. Particle swarm optimization is adopted for

solving CGRA mapping problem in [17, 18]. The calculation for fitness, which is used to move

particles (DFG nodes) in particle swarm optimization, is specifically designed to optimize mul-

tiple objectives from the routing paths. Comparing to subgraph homeomorphism formalization,

our graph minor approach takes advantage of sharing different data routes from one producer

operation to multiple consumer operations.

EPIMap [20] formalizes the CGRA mapping problem as an graph epimorphism problem

with the additional feature of re-computations. The core of this approach consists of a subgraph

isomorphism solver which finds the maximum common subgraph (MCS) [30] between the DFG

and the resource graph of CGRA. The idea is to transform the DFG by inserting dummy routing

nodes or replicated operation nodes so that the routing requirements could be satisfied through

multiple runs of the core subgraph isomorphism solver. EPIMap can generate better schedul-

ing results compared to EMS with similar compilation time. Most graph approaches solve a

subset of the epimorphism problem defined in EPIMap. In our graph minor approach, rather

than transforming the DFG, we directly explore the structural properties between the DFG and

resource graph of CGRA during the mapping process. It is expected that the mapping algorithm

can decide the feasible solution by calling the graph minor test procedure only once.
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3 Modulo Scheduling for CGRA

Given a loop from an application and a CGRA architecture, the goal of mapping is to generate

a schedule such that the application throughput is maximized. The loop is represented as a

data flow graph (DFG) where the nodes represent the operations and the edges represent the

dependency among the operations. Figure 4(a) shows the DFG of a simple loop. Figure 4(b)

shows a 2x2 CGRA consisting of four functional units (FUs) where the loop should be mapped

to. The mapping problem consists of (a) scheduling the operations in space and time so as to

satisfy the dependency constraints, and (b) explicit routing of the operands from the producers

to the consumers.

3.1 CGRA Architecture

For simplicity of exposition, in the algorithm description we assume a homogeneous CGRA

architecture with comprehensive FUs that can support all possible operations. However, our

mapping approach can support diverse CGRA architectures through parameterization. Our reg-

ister file modeling approach can also support many different register file configurations such as

NORF (architecture with no RF shown in Figure 3(a)), LRF (architecture with local shared RF

shown in Figure 3(b)) and CRF (the architecture with central shared RF shown in Figure 3(c)).

Heterogeneities for functional units are also supported in our framework. For example, memory

FUs can have extra accesses to on-chip data memory through the data bus comparing to normal

FUs. Experimental evaluations for different CGRA architectures will be presented in Section 6.
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Figure 3: 4×4 CGRAs with different register file configurations

3.2 Modulo Scheduling

Modulo scheduling is a software pipelining technique used to exploit instruction-level-parallelism

in the loops by overlapping consecutive iterations [37]. The schedule produced includes three

phases: the prologue, the kernel, and the epilogue. The kernel corresponds to the steady state

execution of the loop and comprises of operations from consecutive iterations. The schedule

length of the kernel, which is also the interval between successive iterations, is called the initi-

ation interval (II). If the number of loop iterations is high, then the execution time in the kernel

is dominant compared to the prologue and the epilogue. Thus, the goal for modulo scheduling

is to minimize the II value. Initially, the scheduler selects the minimal II (MII) value between

resource-minimal II and recurrence-minimal II, and attempts to find a feasible schedule with

that II value. If the scheduling fails, then the process is repeated with an increased II value.

Figure 4(c) shows the modulo-scheduled version of the loop in Figure 4(a) to the CGRA

architecture in Figure 4(b) with prologue, kernel, and epilogue where II=2. Notice that operation
4 from the ith iteration is executing in the same cycle with operation 1 and operation 2 from

the (i+1)th iteration in the steady state. Also, we need to hold the output of operation 2 in a

routing node (R) till it gets consumed by operation 4. This explicit routing between FUs is what

sets apart modulo scheduling in CGRAs from conventional modulo scheduling, where FUs are

fully connected through the central register file (RF) and routing is guaranteed. In CGRAs, the

modulo scheduler has to be aware of the underlying interconnect among the FUs and the RFs to

route data.
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Figure 4: Modeling of loop kernel mapping on CGRAs: An illustrative example.

3.3 Modulo Routing Resource Graph (MRRG)

Mei et al. [33] defined a resource management graph for CGRA mapping, called Modulo Rout-

ing resource graph (MRRG), which has been used extensively in subsequent studies. In MRRG,

the resources are presented in a time-space view. The nodes represent the ports of the FUs and

the RFs, and the edges represent the connectivity among the ports. We adopt a simplified form

of MRRG proposed in [35] where a node corresponds to FU or RF rather than the ports. Our

mapping technique integrates register allocation with scheduling. We model each RF as one

node per cycle in the MRRG. The individual registers within RF are treated as identical ele-

ments and represented by the capacity of the RF as in compact register file model [12]. The

usage of registers is tracked and constrained during the mapping procedure. The number of read

and write ports per RF is also included as a constraint.

The MRRG is a directed graph GII where II corresponds to the initiation interval. Given

a graph G, we denote the vertex set and the edge set of G by V (G) and E(G), respectively.

Each node v ∈ V (GII) is a tuple (n, t), where n refers to the resource (FU or RF) and t is the

cycle. Let e = (u, v) ∈ E(GII) be an edge where u = (m, t) and v = (n, t+1). Then the edge

e represents a connection from resource m in cycle t to resource n in cycle t+1. Generally, if

resource m is connected to resource n in the CGRA, then node u = (m, t) is connected to node v
= (n, t+1), t ≥ 0.

For example, Figure 4(d) shows the MRRG corresponding to the CGRA shown in Figure

4(b). The resources of the CGRA are replicated every cycle along the time axis, and the edges

point forward in time. During modulo scheduling, when a node v=(n, t) in the MRRG becomes

occupied, then all the nodes v’=(n, t+k×II) (where k > 0) are also marked occupied. For

example, in the modulo schedule with II=2 shown in Figure 4(c), as F1 is occupied by operation
1 in cycle 0, it is also occupied by operation 1 every 2 × k cycle. In most CGRA mapping

techniques, this modulo reservation for occupied resources is done through a modulo reservation

table [33].

3.4 MRRG with Wrap-around Edges

The goal of CGRA modulo scheduler is to generate II different configurations for the CGRA

where each configuration corresponds to a particular cycle in the kernel. These configurations

are stored in the configuration caches and provide configuration contexts to FUs every cycle.

As these configurations are repeated every II cycles, the output from the resources involved in

the last configuration cycle are consumed by the resources involved in the first configuration
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cycle. Thus instead of using MRRG where the time axis grows indefinitely till the steady state

is achieved, we could restrict the time axis to the target II. We then need to add wrap around

edges from the last cycle to the first cycle as shown in Figure 4(e) (similar graph is also used in

[16]). The modulo scheduled kernel in Figure 4(c) can now be simplified to the graph in Figure

4(f). We refer to this simplified graph as schedule and route graph (SRG), which captures the

scheduling plus routing information and is a subgraph of the MRRG. So instead of using a

modulo reservation table, we can directly use MRRG with wrap around edges, which provides

us an integrated view during mapping. In the following, the term MRRG will be used to refer to
MRRG with wrap around edges.

4 CGRA Mapping Problem Formalization

We first present the formalization of the CGRA mapping problem in the form of subgraph

isomorphism when no data routing is required and subgraph homeomorphism when routes are

not shared. We then model the CGRA mapping as a graph minor problem [38] between the

DFG and the MRRG in the presence of route sharing. Meanwhile, we point out the necessary

restrictions imposed in the formalization. We also provide the NP-completeness proof for the

CGRA mapping problem under our graph minor formalization.

4.1 Subgraph Isomorphism and Subgraph Homeomorphism Mapping

Let H be a directed graph representing the DFG and GII be a directed graph representing

the MRRG with initiation interval II . We are looking for a mapping from the input graph H
to the target graph G. In the ideal scenario of full connectivity among the FUs, all the data

dependencies in the DFG can be mapped to direct edges in the MRRG. That is, for any edge

e = (u, v) ∈ E(H), there is an edge e = (f(u), f(v)) ∈ E(G) where f represents the

vertex mapping function from the DFG to the MRRG. This matches the definition of subgraph

isomorphism in graph theory. Thus the CGRA application mapping problem can be solved

using techniques for subgraph isomorphism from the graph theory domain [42, 11].

In reality, however, data may need to be routed through a series of nodes rather than direct

links. For example, the edges (1, 3) and (1, 4) in Figure 2(a) are routed through additional

nodes. If an edge e = (u, v) ∈ E(H) in the DFG can be mapped to a path from f(u) to

f(v) in the MRRG G, it matches the subgraph homeomorphism definition [15]. The subgraph

homeomorphism techniques for CGRA mapping problem has been adopted in [41, 3, 7, 17, 18].

Subgraph homeomorphism, however, requires the edge mappings to be node-disjoint (or edge-

disjoint) [15], which means the nodes (or the edges) in the mapping paths for the edges carrying

the same data cannot be shared. We now show how the mapping problem can be formalized in

the presence of route sharing.

4.2 Graph Minor

We now present graph minor [38] based formulation of the application mapping problem on

CGRAs with route sharing. In graph theory, an undirected graph H is called a minor of the

graph G if H is isomorphic to a graph that can be obtained by zero or more edge contractions on

a subgraph of G. An edge contraction is an operation that removes an edge from a graph while

simultaneously merging together the two vertices it used to connect. More formally, a graph H
is a minor of another graph G if a graph isomorphic to H can be obtained from G by contracting

some edges, deleting some edges, and deleting some isolated vertices. The order in which a

sequence such operations are performed on G does not affect the resulting graph H.

A model of H in G is a mapping φ that assigns to every edge e ∈ E(H) an edge φ(e) ∈
E(G), and to every vertex v ∈ V (H) a non-empty connected tree subgraph φ(v) ⊆ G such that

7



1. the graphs {φ(v)|v ∈ V (H)} are mutually vertex-disjoint and the edges {φ(e)|e ∈
E(H)} are pairwise distinct; and

2. for e = {u, v} ∈ E(H), the edge φ(e) connects subgraph φ(u) with subgraph φ(v).

H is isomorphic to a minor of G if and only if there exists a model of H in G [2].

4.3 Adaptation of Graph Minor for CGRA Mapping

We need to adapt and restrict the definition of graph minor. Graph minor is usually defined

for undirected graphs. For directed graphs, the definition of edge contraction is similar to the

undirected case [39]. Figure 2(e)-(f) show examples of directed edge contractions.

We call the subgraph M ⊆ G defined by the union of {φ(v)|v ∈ V (H)} and {φ(e)|e ∈
E(H)} as the schedule and route graph (SRG) of H in G. The SRG M is essentially the

model of H in G. The edge set of M is partitioned into the contraction edges (the edges in

{φ(v)|v ∈ V (H)}) and the minor edges (the edges in {φ(e)|e ∈ E(H)}). The minor edges

support the data dependencies in the dataflow graph, while the contraction edges represent data

routing through additional nodes. For example, in Figure 2(d), φ(1) is the subgraph inside the

dashed region rooted at node 1. The dashed edges are the contraction edges, while the solid

edges are the minor edges.
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Figure 5: Minor relationship between DFG and MRRG

Minor edge constraint In graph minor definition, for e = (u, v) ∈ E(H), the minor edge

φ(e) connects φ(u) with φ(v). In other words, it is sufficient for φ(u) to connect any node in

the subgraph φ(u) with any node in the subgraph φ(v). However, for our problem, we need to

define one particular node in the subgraph φ(v) where the actual operation φ(v) takes place and

it has to receive all the required inputs. The remaining nodes in φ(v) are used to route the result

of the operation. More concretely, for our mapping, each subgraph φ(v) ⊆ G is a tree rooted at

the node where the computation takes place. Let root(φ(v)) be the root of the tree φ(v). Then

we introduce the restriction that for e = (u, v) ∈ E(H), the minor edge φ(e) connects φ(u)
with root(φ(v)). For example, the DFG in Figure 5(a) has an edge e that connects the DFG

nodes 1 and 4, and it is mapped to a 2×2 CGRA shown in Figure 5(b). Then in the SRG, φ(1)
has to connect to the root of φ(4) through a direct link φ(e) as shown in Figure 5(c).

Timing constraint The wrap-around nature of the MRRG introduces another restriction. For

an SGR M to be a valid mapping, it has to satisfy the timing constraints as follows. For

simplicity, let us first ignore the recurrence edges in the DFG. Then the DFG H is a di-

rected acyclic graph. Let u ∈ V (H) be a node in the DFG without any predecessor and
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root(φ(u)) = (m, t) ∈ M) where 0 ≤ t < II and M is the SRG, a subgraph of the MRRG.

That is, u has been mapped to the FU m in configuration t in the MRRG. We define the times-

tamp of u as cycle(u) = t, assuming u is executed in cycle t. Let v ∈ V (H) be a DFG node

with u as its predecessor node and route(u, v) be the number of nodes (possibly zero) in the

connecting path between root(φ(u)) and root(φ(v)) in the SRG M . For a mapping M to be

valid, the following timing constraint, which ensures identical cycle along all input edges of v,

must be satisfied for each internal DFG node v.

∀u, u′ ∈ pred(v) : cycle(u) + route(u, v) = cycle(u′) + route(u′, v)

We also define

∀u ∈ pred(v) : cycle(v) = cycle(u) + route(u, v) + 1

where pred(v) is the set of all predecessors of v in the DFG. Note that we are not doing modulo

operation (w.r.t. II) while computing the cycle values. Figure 6 shows this timing computation.

In the SRG, root(φ(2)) is in cycle 0 and root(φ(3)) is in cycle 1. However, root(φ(2)) has to

go through three routing nodes to reach root(φ(4)); and root(φ(3)) can directly pass the data

to root(φ(4)) in the next cycle. The timing constraint is then violated, leading to an invalid

mapping.

1 2 

3 

4 4
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(a) DFG (b) Invalid schedule and route graph 
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Figure 6: Invalid mapping under timing constraint
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Figure 7: Mapping with recurrence edge under timing constraint

For a recurrence edge e = (u, v) ∈ V (H) in the DFG, we introduce additional timing

constraint

route(u, v) = II × d+ cycle(v)− cycle(u)− 1

where d is the recurrence distance of e. Figure 7 shows how this timing constraint is used.

Suppose root(φ(1)) is executed in cycle 0; then it will receive the output of root(φ(4)) 6 cycles

(3 iterations) later. As root(φ(4)) is executed in cycle 2 (cycle(4) = 2), the length of the

route from root(φ(1)) to root(φ(4)) should be 2*3+0-2-1 = 3, which means the route contains

three routing nodes. In fact, the timing constraint of normal edges are just special cases where

distance d is equal to 0.

Attribute constraint Each node in the DFG and the MRRG has an attribute that specifies

the functionality of the node. For example, a node in the DFG can have memory operation as

its attribute, while a node in the MRRG can have an attribute that signifies that it can support
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memory operations. Attribute constraint ensures that a DFG node is mapped to an MRRG

tree subgraph whose root has a matching attribute. For example, the root of the tree subgraph

for mapping a memory operation can only be a functional unit supporting memory accesses.

However, other nodes in the tree subgraph can be any types of functional units or register files.

Register file constraint The mapping must ensure availability of register file read/write ports

and capacity in the corresponding cycle if a link from/to the register file is used.

Restricted Graph Minor We can now define application mapping on CGRAs as finding a

valid subgraph (schedule and route graph) M of the MRRG such that the DFG can be obtained

through repeated edge contractions of M. We call the DFG a restricted minor of the MRRG and

the subgraph M represents the mapping. Alternatively, the DFG H is a minor of G if and only

if there exists a model of H , represented by the schedule and route graph M , in G.

lemma 1. The restricted graph minor problem for directed graphs is NP-complete.

Proof. We first show that the restricted graph minor problem for directed graphs is in the set

of NP. Given a mapping in the form of SRG M ⊆ G, we can check in polynomial time (a)

the graphs {φ(v)|v ∈ V (H)} are mutually vertex-disjoint and the edges {φ(e)|e ∈ E(H)}
are pairwise distinct, (b) for e = (u, v) ∈ E(H), the edge φ(e) connects subgraph φ(u) with

root(φ(v)), and (c) the timing constraints as defined earlier are satisfied. That is DFG H is a

minor of the G.

We now show that for general directed graphs, the restricted graph minor problem can be

reduced to the Hamiltonian cycle problem, which is an NP-complete problem. The Hamiltonian

cycle problem is to find a cycle in a directed graph G visiting each node exactly once. We can

construct a graph H which is a directed cycle with |V (G)| nodes. Finding the Hamiltonian cycle

in G can now be reduced to finding a restricted graph minor between H and G. As |V (G)| =
|V (H)|, each subgraph φ(v) can only consist of a single vertex and each edge mapping φ(e)
where e = (u, v) ∈ E(H) directly connects vertex φ(u) to vertex φ(v). This matches the exact

definition of Hamiltonian cycle. Thus the restricted graph minor problem for directed graphs is

NP-complete.

5 Graph Minor Mapping Algorithm

Our solution for restricted graph minor containment problem is inspired by the tree search

method (also called state space search) widely used to solve a variety of graph matching prob-

lems [34]. The contribution of our solution is the introduction of customized and effective

pruning constraints in the search method that exploit the inherent properties of the data flow

graph and the CGRA architecture. We first present the exact restricted graph minor containment

algorithm followed by description of additional strategies to accelerate the search process.

5.1 Algorithmic framework

Our goal is to map a DFG H to the CGRA architecture. Similar to the traditional modulo

scheduling, we start with the minimum possible II, which is the maximum of the resource con-

strained II and the recurrence constrained II, that is, II = max(ResMII, recMII). Given this

II value, we create the MRRG GII corresponding to the CGRA architecture. If H is a minor of

GII , then the DFG can be mapped with initiation interval II . To check graph minor contain-

ment, we check if there exists a model or mapping of H in the form of a valid SRG M ⊆ GII .

If such SRG M does not exist, we increment the II value by one, create the MRRG correspond-

ing to this new II value, and perform graph minor testing for this new MRRG. This process is
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repeated till we have generated an MRRG with sufficiently large value of II so that the DFG can

satisfy the graph minor test. Algorithm 1 provides a high-level view of our mapping framework.

Algorithm 1: Graph Minor Mapping Algorithm

begin
1 order list := DFG node ordering(H);

2 II := max(resMII, recMII);

3 while do
/*Create MRRG with II*/;

4 GII := Create MRRG(G, II); M := ⊥;

5 for all v ∈ V (H) and e ∈ E(H) do
6 φ(v) := ⊥; φ(e) := ⊥;

7 add all φ(v), φ(e) to M ; /* empty mapping */

8 if Minor(H, GII , M) then
9 return(M);

10 II++;

Function Minor(H,G,M)

begin
1 if no unmapped node in H then
2 return(success);

3 v := next unmapped node in H according to order list;

4 P := {p |p ∈ pred(v) ∧ φ(p) 	= ⊥}; /*mapped predecessors of v */

5 S := {s |s ∈ succ(v) ∧ φ(s) 	= ⊥}; /*mapped successors of v */

/*All candidate mappings are generated satisfying minor edge, timing, attribute,

pruning constraints */

6 Γ := min map(v, P, S);

7 for each φ(v) ∈ Γ do
8 update M with φ(v);
9 if Minor(H,G,M ) then

10 return(success); /* mapping completed */

11 if Γ = ⊥ then
/* No feasible node mapping; expand predecessors */

12 for each possible expansion do
13 expand map(v, P,M );

/* attempt mapping v again */

14 if Minor(H,G,M ) then
15 return(success);

/* No node mapping; backtrack to the predecessor */

return(failure);

The core routine of the mapping algorithm Minor() performs graph minor testing. We con-

sider all possible mapping between the DFG and the MRRG; thus our algorithm is guaranteed

to generate a valid mapping if it exists. Clearly, the number of possible mappings between the

DFG and the MRRG is exponential in the number of nodes of the DFG. That is, our search

space is large. Our goal is to either (a) quickly identify a mapping such that the DFG passes

the restricted minor test, or (b) establish that no such mapping exists. As mentioned earlier, we

employ powerful pruning strategies to efficiently navigate this search space. We also carefully

choose the order in which we attempt to map the nodes and the edges so as to achieve quick

success in finding a valid mapping or substantial pruning that helps establish the absence of any

valid mapping.
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The procedure Minor() starts with an empty mapping. As mentioned earlier, restricted graph

minor mapping for our problem requires mapping each vertex v ∈ V (H) in the DFG to a

tree φ(v) ⊆ G in the MRRG. Each edge e = (u, v) ∈ E(H) is simply mapped to an edge

φ(e) ∈ E(G) that connects some node in φ(u) to root(φ(v)). Following this definition, we

attempt to map the nodes one at a time in some pre-defined priority order, which will be detailed

in Section 5.2.

There exist many possibilities to map a node v ∈ H to a tree subgraph φ(v) ⊆ G. However,

the min map() function in Algorithm 1 returns a set Γ of minimal valid mappings φ(v). Each

minimal valid mapping contains minimal number of nodes and satisfies various constraints, in-

cluding minor edge, timing, attribute and pruning constraints. The minor edge constraint ensures

that all the edges connecting the mapped direct predecessors and successors of v can be mapped.

More specifically, while mapping node v, we identify all its mapped direct predecessors P and

successors S. We ensure that minor edge constraint can be satisfied between each node p ∈ P
and v as well as between v and each node s ∈ S. In other words, if node v has mapped direct

successors, then we attempt to generate φ(v) containing additional routing nodes to ensure that

root(φ(s)), s ∈ S, can be reached from some node in φ(v). Meanwhile, root(φ(v)) should be

linked from every φ(p), p ∈ P . If node v does not have any mapped direct successor, φ(v) is

generated containing a single node. Through min map() function, edge mapping is automati-

cally performed under minor edge constraint checking and we do not need to explicitly map the

edges.

In addition, we check for timing constraint between v and its predecessors/successors to

ensure that the data is routed correctly. Attribute compatibilities are checked between the DFG

node v and the root of the candidate tree subgraph root(φ(v)). If the target CGRA contains

register files, the register constraint is used to check for available ports and capacity. Finally,

we also apply aggressive pruning constraints to eliminate mappings that are guaranteed to fail

in the future.

If we get non-empty Γ for each node v, then we will eventually obtain a complete feasible

solution. However, Γ could be empty if there is no minimal valid mappings. In this case, we

have to explore more elaborate tree subgraph mappings for the candidate node v. This is done

through expand map() function. In expand map() function, we add one extra node in φ(p) for

each p ∈ P , which helps to enhance the routing path from φ(p) to φ(v). If we cannot map v
even after all the possible expansions, then we backtrack and attempt a different mapping.

The mapping process continues till we have either mapped all the DFG nodes (i.e., the DFG

is a restricted minor of the MRRG) or we have discovered that no such mapping is possible (i.e.,

the DFG is not a restricted minor of the MRRG) and we have to increment the II value.

5.2 DFG node ordering

An appropriate ordering of the DFG nodes during mapping is crucial to quickly find a feasible

solution. We impose the constraint that the nodes along the critical path have higher priority,

i.e., they appear earlier. This is because if the critical path cannot be mapped with the current II

value, then we can terminate the search process and move on to the next II value.

In addition, we employ an ordering that helps us validate the timing constraints as discussed

in Section 4.3. A node v can be mapped only when at least one of its direct predecessor or

successor has been mapped. That is v should appear in the ordering after at least one of its

direct predecessor or successor nodes. The only exception is the first node in the ordering. The

advantage of this ordering is that the timestamps cycle(v) are generated appropriately for the

nodes so that timing conflicts can be avoided early. When the DFG contains disjoint parts, a

new timestamp is regenerated and propagated for every disjoint component during the mapping

process.

Figure 8(b) shows a DFG and the ordering of the nodes through the arrow signs. We start

with the input node 1 on the critical path. We proceed along the critical path to node 3 and node
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4. Notice that we could not include node 2 after node 1 because none of its direct predecessors

or successors would have appeared in the ordering by then. After node 4, we include node 2 in

the ordering.

5.3 Mapping Example

Suppose we have a DFG as shown in Figure 8(b) and we are attempting to map it to a 2×2

CGRA array. Let us assume that we are currently considering II=2. For simplicity of exposition,

we only draw the occupied edges in the MRRG. The entire mapping process is illustrated in

Figures 8(c-g).

(b)  DFG 
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F2 F3 

0 F

F3F22 FF2

(a) 2×2 CGRA   (c) Map DFG node 1 to (C0, F0) 
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Figure 8: An example of mapping process during the restricted graph minor test.

The process starts with mapping node 1. Node 1 is the initial node and it has no mapped

direct successor. So the first tree subgraph generated by min map() function contains only one

node as shown in Fig 8(c): F1 in cycle 0 denoted as (C0, F0). Then we pick the next node

in the priority list which is node 3. Again, this node has no mapped direct successors; so its

tree mapping also contain only one node. However, we need to make sure that φ(1) is directly

connected with root(φ(3)) according to the edge constraint imposed by the edge e = (1, 3) in

DFG. Mapping node 3 to (C1, F0), as shown in Figure 8(d), can satisfy the constraint.

The next node in the priority list to be mapped is node 4. However, this time we fail to

find any feasible node directly connected to the mapped direct predecessors φ(1) and φ(3). As

mapping for node 4 fails, we expand its predecessor’s mapping. An extra node (C1, F1) is added

to φ(1) in Figure 8(e). Notice that to distinguish between root nodes and other nodes, the root

nodes have been shadowed. Now node 4 can be mapped to (C0, F1) in Figure 8(f).

The final node in the list is node 2. This time, node 2 has two mapped successors, node 3

and node 4. Thus, we find a tree subgraph φ(2) containing (C0, F2) and (C1, F3) (see Figure

8(g)) that satisfy both the minor edge constraint (direct links to root nodes of φ(3) and φ(4)) and

the timing constraints at node 3 and 4. As all the nodes and the minor edges have been mapped

successfully, DFG is a minor of MRRG with II = 2.

5.4 Pruning constraints

Pruning constraints are important to reduce the compilation time. Pruning constraints look

ahead and quickly identify if the current mapping can be extended to a successful final mapping.

This lookahead helps to eliminate mappings that are guaranteed to fail in the future. Note that

the pruning constraints do not affect the optimality of the solution.

Available resource constraint This constraint simply checks that the number of available

FUs of each type in the MRRG is larger than or equal to the number of unmapped DFG nodes

of the same type. For example, the number of remaining available memory FUs must be larger
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or at least equal to the number of unmapped memory operations in the DFG. Global variables

are used to record information about the available FUs and the unmapped DFG nodes and are

updated every time the partial mapping changes. Thus both time and space complexity of this

constraint are O(1).

Unmapped 
DFG node 

Mapped  
DFG node 

Available  
MRRG node 

Occupied  
MRRG node 

Available direct 
predecessor/successor 

 p1 � Map 

s1� Map  s2 � Map 

n � Map 

 p2 � Map 

�(n) 
root 

root A tree subgraph 
in MRRG 

Figure 9: Illustrations of degree pruning constraint.

Degree constraint This constraint considers the local structures between the DFG H and the

MRRG G. Let φ(n) ⊆ G be the tree subgraph representing the mapping of node n ∈ V (H).
The number of unmapped direct predecessors of n in the DFG must be smaller than or equal to

the number of available direct predecessors of root(φ(n)) in the MRRG.

On the other hand, if n has any unmapped direct successors, then the number of available

direct successors of φ(n) must be at least one. This is because the data from φ(n) can be routed

through any available outgoing node. For example in Figure 9, DFG node n is mapped to φ(n)
in the MRRG. It has two unmapped direct predecessors and two unmapped direct successors.

So root(φ(n)) must have at least two available direct predecessors and there must be at least

one available direct successor of φ(n) in the MRRG. Notice that the available direct successors

of φ(n) are those available MRRG nodes directly connected from any node in φ(n).
The degree pruning constraint checks for all the DFG nodes in the current mapping. The

time complexity for this pruning constraint is O(cN), where N is the number of DFG nodes

and c is the average number of producer nodes in φ(n) across all mapped DFG nodes n.
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Figure 10: Illustration of predecessor and successor constraints.

Predecessor and successor constraint We further exploit structural patterns formed by each

mapped DFG node n and its predecessors/successors as shown in Figure 10. We check the

timing constraint inherently imposed by these patterns. We first calculate the shortest path

lengths in both DFG and MRRG. The shortest paths defined here only consists of unmapped

DFG nodes or available MRRG nodes except the two end nodes. For any mapped predecessor p
of n, if p and n are connected through the shortest unmapped path r = (p� n), then φ(p) and
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φ(n) should also be connected by a shortest available path R = (x � root(φ(n))), x ∈ φ(p),
in MRRG. Thus we have

cycle(x)− cycle(rootφ(n)) ≥ max(length(R), length(r))

which uses the fact that the timestamp differences must be at least equal to the length of the

shortest path connecting the corresponding nodes either in the MRRG or in the DFG. Similar

constraints are also applied to the patterns formed by n and its successors.

We also consider the relationships between a mapped DFG node n and its unmapped prede-

cessors/successors. However, as these predecessors/successors have not been mapped yet, there

is no explicit structural information to be used for pruning purpose. Instead, we calculate the

number of available MRRG nodes those could be connected to root(φ(n)) (or reached from

φ(n)) through available MRRG paths. The number must be at least equal to the number of

unmapped predecessors (or successors) of n, which can be connected to (or from) n through

unmapped DFG paths.

To obtain the reachability information in both the DFG and the MRRG during the mapping,

two reachability matrices are built using an efficient algorithm by Italiano et al. [24]. The

algorithm has a time complexity O(K) with O(K2) space overhead, where K is the number of

nodes in the input graph. Each element (u, v) in the matrix represents the shortest path length

between the node u and node v. To build the reachability matrix for M MRRG nodes, the time

complexity is O(M2). As the computation for reachability matrices is the most time consuming

step, the overall time complexity for the pruning constraint is O(M2).
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Figure 11: Illustration of feasibility constraint.

Feasibility constraint In the final pruning constraint, we exploit the structural patterns of the

unmapped DFG nodes. As shown in Figure 11, for each unmapped DFG node, we find all

its mapped predecessors and successors reachable through unmapped paths. There must be at

least one MRRG node that has the same connectivity to all the subgraphs the corresponding

predecessors and successors have been mapped to. More specifically, let n is such an unmapped

DFG node, p is a mapped predecessor of n and p is connected to n through an unmapped path.

Then in the MRRG, there must be at least one available node m such that m could be connected

from φ(p) through an available path. As this pruning constraint also depends on the reachability

matrices, the complexity is O(M2).

5.5 Acceleration strategies

We now introduce additional strategies to further accelerate compilation time. These strategies

are integrated in the preprocessing step and the constraints in the algorithm infrastructure. All

the strategies are designed in such a way that they do not impact the optimality of the mapping.
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5.5.1 Dummy nodes in the DFG

We introduce dummy nodes in the DFG during the preprocessing step. These dummy nodes

are only used for routing, which means they can be mapped to non-computation nodes in the

MRRG, e.g., register file nodes. Basically, the idea is based on the observation that expanding

the tree mapping φ(v) for any node v is quite expensive. This is because φ(v) is expanded

only after all attempts to map subsequent nodes have failed. Also the expansion is carried out

incrementally, i.e., φ(v) is expanded one node at a time. The goal of introducing dummy nodes

is to avoid the expansions as much as possible without affecting the quality of the solution.

Step Action Progress 
1 Map 1 to (C0, F0). Mapping succeed. 
2 Map 2 to (C1, F0). Mapping succeed. 
3 Map 3 to (C0, F1). Mapping succeed. 
4 Expand ϕ(1) to (C1, F1). Mapping fails;  

expansion is carried out. 
5 Expand ϕ(1) to (C0, F3). Mapping fails;  

expansion is carried out. 
6 Map 4 to (C1, F3). Mapping succeed. 
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Step Action Progress 
1 Map 1 to (C0, F0). Mapping succeed. 
2 Map 2 to (C1, F0). Mapping succeed. 
3 Map 3 to (C0, F1). Mapping succeed. 
4 Map P1 to (C1, F1). Mapping succeed. 
5 Map P2 to (C0, F3). Mapping succeed. 
6 Map 4 to (C1, F3). Mapping succeed. 
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Figure 12: A motivating example for dummy node insertion.

Figure 12 shows an example of how dummy nodes can avoid expansion of node mapping.

We want to map the DFG in Figure 12(a) to 2×2 CGRA. The mapping order is 1 → 2 → 3 → 4.

The first three nodes 1, 2, and 3 can be mapped successfully. However, when we try to map node

4, the mapping attempt fails (Γ is empty) and we have to expand φ(1) twice in order to find the

final feasible mapping for node 4. The final schedule and route graph is shown in Figure 12(b)

with the expansion nodes for φ(1) denoted as E1. The detailed search process is also listed in

Figure 12(c).

To avoid the mapping failures and expansions, we can add two dummy nodes P1 and P2,

as shown in Figure 12(d). Suppose the mapping order for the new DFG is 1 → 2 → 3 → P1 →
P2 → 4. After mapping the three nodes 1, 2 and 3, we will continue to map P1 and P2 without

any failure. Finally, node 4 will be mapped successfully at the first attempt. The final schedule

and route graph is shown in Figure 12(e) and the detailed mapping process is listed in Figure

12(f).

Clearly, dummy node insertion is useful in guiding the mapping process. So we add dummy

nodes as part of DFG pre-processing step. We first assign scheduling levels to each DFG node

using as soon as possible (ASAP) scheduling policy and as late as possible (ALAP) scheduling

policy. The number of dummy nodes inserted to a DFG edge e = (u, v) ∈ E(H) is equal to

the difference between the ASAP level of v and the ALAP level of u. This is somewhat similar

in concept to node balancing in [20]. However, the difference is that we insert dummy nodes

to accelerate the search process to obtain a feasible schedule. In the previous approach [20],

adding more balancing nodes is a requirement to obtain a valid schedule.

5.5.2 Fast implementation of pruning constraints

For large DFGs, the pruning constraints can increase the compilation time. The most expensive

part is the reachability matrices computation. To reduce this overhead, we bypass updating
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the reachability matrix of the MRRG at each step. We do, however, generate the reachability

information for the DFG statically in the beginning and for the MRRG at its generation step for

each II value. We believe that the two static matrices provide limited but enough information for

the pruning purposes. The static reachability matrices now record the reachability information

between any two arbitrary nodes in the absence of any mapping, e.g., the element (x, y) in the

MRRG matrix records the static shortest path length between nodes x and y. With only static

reachability matrix, the pruning constraints have to be redesigned as follows.

Fast implementation of predecessor and successor constraints Unlike the original con-

straint, the fast implementation only focuses on the structural patterns related to current map-

ping. Suppose the candidate DFG node n is mapping to φ(n) in the MRRG. For every mapped

predecessor p of n, we can have the length value for the static shortest path rs = (p� n), from

static DFG matrix. Let RS = (x � φ(n), x ∈ φ(p), be the static shortest path between φ(p)
and φ(n) in MRRG. x can be identified by checking the static MRRG matrix for all the nodes

in φ(p). Utilizing the same fact used in the original constraint, we have

cycle(x)− cycle(root(φ(n))) ≥ max(length(RS), length(rs))

Similarly, constraints are also imposed for the structural patterns formed by the candidate

node and its mapped successors. The fast implementation reduces the runtime complexity from

O(M2) to O(cN) where c is the average number of nodes in φ(n) for each DFG node n.

Fast implementation of feasibility constraint The basic idea for designing fast implementa-

tion of feasibility constraint is to consider the local effects of consuming one MRRG node for

the remaining unmapped DFG nodes. Suppose the candidate MRRG node to be used for map-

ping is m, then the consumption will affect the potential mappings of those who also require m.

If m is directly linked from any node in φ(p), p is a mapped DFG node, then the consumption

of m can affect the mapping for the unmapped child child p of p. In other words, we need to

ensure that apart from m there is another available MRRG node m′ that can be used to map

child p satisfying certain timing constraints. For every mapped successor s of child p, we can

have the static shortest path rs = (child p � s). Let RS be the static shortest path connecting

m′ and root(φ(s)), RS = (m′ � root(φ(s))). Following the same reasoning used before, we

have

cycle(m′)− cycle(root(φ(s))) ≥ max(length(RS), length(rs))

If m is a direct predecessor of the root node of φ(s′), where s′ is a mapped DFG node,

similar constraints are used for the unmapped parent node of s′. The time complexity is also

O(cN).

5.6 Integration of Heuristics

Our modulo scheduling algorithm (Algorithm 1) can achieve the optimal II by definition. This

is because it checks if the DFG is a minor of the MRRG for each value of II, starting with

the minimum possible value. However, even with the pruning and acceleration strategies, the

runtime of the optimal algorithm can be prohibitive when both the number of DFG nodes and

the number of CGRA functional units are quite large. Therefore, we integrate some heuristics in

the algorithm to speed up the search process. This may introduce sub-optimality, i.e., the search

process may miss a valid mapping at lower II value even though it exists. But the compilation

time improves significantly.

The first heuristic avoids backtracking between two unrelated nodes. In the optimal search

process, if a node m cannot be mapped, then we backtrack to the node n which appears just

before m in the DFG node ordering. However, node n may not be a predecessor or successor of
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node m in the DFG and hence may not be able to steer the search towards a successful mapping

to m. Instead, we directly backtrack to the last predecessor or successor of node m in the

ordering.

The second heuristic is motivated by the edge-centric mapping [36]. In graph minor testing,

instead of enumerating all possible tree subgraphs for node n, the procedure aims to find limited

number of feasible subgraphs. The feasible subgraphs are chosen to be those with minimal

number of nodes. After all the specified subgraphs have been explored, the node mapping fails.

The final heuristic makes it possible to escape from extensive subgraph expansions. We put

a counter for each node mapping. The counter is increased every time an expansion is carried

out. Once the counter reaches a pre-defined threshold value, we eliminate current mapping

and backtrack to previous mappings. Our experimental evaluation reveals that this is the only

heuristic that sometimes prevent us from reaching a feasible solution even if one exists.

6 Experimental Evaluation

We now proceed to evaluate the quality and the efficiency of our mapping algorithm. We

initially target a mesh-like 4×4 CGRA architecture. The 4×4 array is the basic structure in

many CGRA architectures and has been widely used to evaluate various mapping algorithms

[35, 36, 27, 22, 25, 6]. We assume each functional unit is comprehensive and is capable of

handling any operation. Later, we evaluate the versatility of graph minor mapping approach in

supporting diverse CGRA architectures such as heterogenous functional units and various reg-

ister file configurations. We also evaluate the scalability issue by mapping to 4×8, 8×8, 8×16

and 16×16 CGRAs.

Benchmark #ops #MEM ops #edges Benchmark #ops #MEM ops #edges
SOR 17 6 11 osmesa 16 9 17

swim cal1 59 23 39 texture 29 7 31

swim cal2 62 26 44 quantize 21 8 24

sobel 27 7 34 rgb2ycc 41 15 44 3

lowpass 23 9 19 rijndael 32 13 35

laplace 20 8 16 fft 40 20 42

wavelet 12 4 6 tiff2bw 42 20 50

sjeng 36 13 21 fdctfst 59 16 80

scissor 12 4 13 idctflt 87 25 114

Table 1: Benchmark characterisitcs

We select a set of loop kernels from MiBench [19] and SPEC2006 [23]. The DFGs for these

kernels are generated from Trimaran [8] back-end using Elcor intermediate representation [1].

Detailed benchmark characteristics are listed in Table 1, including the number of operations,

and the number of load/store operations.

Comparison with different techniques There exist a number of approaches to CGRA map-

ping as presented in Section 2. We compare our graph minor approach (abbreviated as G-Minor

here) with two previous techniques: simulated annealing based approaches and EPIMap [20].

Simulated annealing (SA) based approaches [33] are widely considered to provide high-quality

mapping solutions with (possibly) longer compilation time. EMS, the edge-centric mapping

approach [36], provides significantly reduced compilation time with some degradation in the

quality of the schedule comparing to SA. As mentioned in Section 1, in parallel to G-Minor ap-

proach, [20] have proposed graph epimorphism based mapping approach EPIMap that produces

better quality solutions than EMS with similar compilation time. We compare G-Minor with

EPIMap as it represents state-of-the-art CGRA mapping approach. For the comparison, we

have re-implemented the EPIMap approach [20] and the simulated annealing (SA) algorithm
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[33]. Our implementations of these two approaches allow route sharing. To demonstrate the

benefits gained from using route sharing, we also create a subgraph homeomorphism mapping

kernel. Moreover, we also integrate re-computation methodology introduced in EPIMap as a

DFG pre-processing step with our G-Minor framework.

All the evaluations have been carried out for 4×4 mesh-like CGRA with comprehensive

functional units similar to the setup in [20]. The compilation time is reported on a Intel Quad-

Core processor running at 2.83GHz with 3GB memory.

Figure 13 compares the scheduling quality for 18 benchmarks. The Y-axis represents the

achieved II value. The first bar represents the minimal II value achievable considering only re-

currence minimal and resource minimal II for each kernel. The remaining bars from left to right

represent the II achieved for G-Minor, EPIMap, simulated annealing (SA), subgraph homeo-

morphism, and G-Minor with re-computation pre-processing (Rec-G-Minor) respectively.
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Figure 13: Scheduling quality for G-Minor, EPIMap, SA, subgraph homeomorphism and G-

Minor with re-computation

We first observe that the scheduling quality generated by EPIMap and G-Minor are quite

similar. The achieved II value is different between the two for only 4 out of 18 benchmarks.

For example, G-Minor produces better scheduling results for rijndael and fdctfst, while EPIMap

performs better for fft and idctflt. Even for these benchmarks, the difference is only one cycle.

The two reasons for the competitive results between G-Minor and EPIMap are the following.

G-Minor exhaustively searches for minor with all routing possibilities, while EPIMap restricts

the number of routing nodes. On the other hand, EPIMap provides extra choices for mapping

the DFGs such as replication (or re-computation) for high fan-out nodes. An interesting possible

future research direction would be to combine the relative strengths of G-Minor and EPIMap.

We conduct preliminary evaluation by integrating re-computation with our G-Minor framework.

It is shown in Figure. 13 that in most cases, Rec-G-Minor can generate better scheduling results

than G-Minor and EPIMap.

We observe that for a large subset of benchmarks (11 out of 18), both G-Minor and EPIMap

achieve Minimal II (MII). SA, on the other hand, achieves minimal II value for 6 benchmarks.

In general, G-Minor and EPIMap provide better schedules compared to SA. A possible reason

is that in SA, a random operation is picked, replaced and routed in each step. It is inefficient in

considering the placement and routing impacts among operations. This inefficiency gets worse

when the routing resources are limited such as in a 4×4 mesh like CGRA. G-Minor and EPIMap,

on the other hand, directly explore the graph structural properties and hence the relationships

among operations.

We carry out additional experiments to demonstrate the benefits of route sharing. We disable

route sharing in our G-Minor algorithm to create a subgraph homeomorphism kernel. As shown

in Figure 13, subgraph homeomorphism generates far worse schedules compared to G-Minor.

The runtime of the approaches for all the benchmarks are shown in Figure 14. It is well

known that SA approaches require longer compilation time [36] specially for large kernels.

Similar compilation time has been reported in [21]. G-Minor and EPIMap reduce compilation

time significantly using more guided approach to mapping. The average compilation time for
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Figure 14: Compilation time for G-Minor, EPIMap, SA, subgraph homeomorphism and G-

Minor with re-computation

EPIMap is 34.26 sec, which is consistent with the timing reported in [20]. G-Minor provides

extremely fast compilation speed on only 0.27 sec on an average. This is because the graph

minor testing algorithm in G-Minor has been highly optimized using various pruning constraints

and different acceleration strategies. EPIMap transforms the DFG and uses it as an input to the

off-the-shelf maximal common subgraph (MCS) kernel [30]. Thus the compilation time for

EPIMap depends on the efficiency of the chosen MCS kernel. Besides, EPIMap might need to

transform the DFG and repeat the MCS kernel computation multiple times when the mapping

fails. This potentially leads to longer compilation time.
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Figure 15: Experimental results for fast G-Minor scheme (with acceleration strategies) com-

pared to slow G-Minor scheme.

Impact of acceleration strategies and heuristics We evaluate reduction in compilation time

using the acceleration strategies presented in Section 5.5. We compare compilation time for two

different versions of G-Minor: the slow mode and the fast mode in Figure 15. The fast mode

uses the acceleration strategies. Both modes achieve identical II for all the benchmarks because

the acceleration strategies are designed such that they do not impact the quality of the solutions,

but provide better guidance for the search process. In Figure 15(a), the compilation time of

the fast mode is normalized w.r.t. the slow mode. The fast mode can effectively reduce the

compilation time by more than 50%. The penalty for the fast mode is in the form of using more

routing nodes. Figure 15(b) compares the number of routing nodes for the two schemes. The

average ratio is around 1.15, which means there are 15% extra routing nodes used in fast mode

because the fast pruning constraints using static shortest path connectivity information can lead

to more node expansions. The heuristics play crucial roles in achieving reasonable compilation

time. In our experiments, 9 out of the 17 benchmarks will fail to return a feasible solution within

10 hours without the heuristics. Meanwhile, the II values of the remaining benchmarks match

the results generated with heuristics.
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Different CGRA configurations As mentioned in Section 3.1, our approach can support dif-

ferent CGRA configurations. The experiment results for 4×4 CGRAs with different number of

memory units and different register file configurations are shown in Figure 16. MxC denotes

the availability of x columns of memory FUs in the array; and y is the number of registers in

a register file. So an architectural configuration MxC-LRF-yR corresponds to an array with x
columns of memory units and locally shared register files, each of which contains y registers.

Each register file is associated with two read ports and one write port. The results indicate that

memory units are the most critical resources. Adding more memory units brings substantial ben-

efit by reducing the achieved II. However, adding more registers may not necessarily improve II.

This is because the intelligent exploration of the search space can find mappings within limited

routing resources. Adding more routing resources such as increasing the size of local/global

register files can reduce the mapping efforts but could also end up with resource wastage. We

notice that starting from M2C-LRF-1R configuration, increasing the number of registers and

providing more connectivity through registers for routing do not reduce the value of the achieve

II.
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Figure 16: Achieved II for different CGRA configurations.

Scalability Our G-Minor fast mode can dramatically accelerate the compilation time. We test

the scalability by configuring the size of NORF CGRA to 4×8, 8×8, 8×16 and 16×16 2D-

mesh. To further stress the scalability, we generate 100 random DFGs where number of nodes

is uniformly distributed in the range (0, 100]. We present the average compilation time for G-

Minor and EPIMap with different CGRA sizes in Table 2. The results confirm that G-Minor

provides better scalability to map kernels on large CGRAs. We do not report compilation time

for SA approaches as it takes too long to generate solutions for large CGRAs.

4×4 CGRA 4×8 CGRA 8×8 CGRA 8×16 CGRA 16×16 CGRA

Avg. compilation time (s) of G-Minor 0.23 0.61 1.51 3.12 7.08

Avg. compilation time (s) of EPIMap 54.78 570.72 837.92 1235.18 1385.27

Table 2: Compilation time for CGRAs with different sizes

7 Conclusions

We present a comprehensive technique for application mapping on CGRAs. We formalize the

CGRA mapping problem as restricted graph minor containment of the data flow graph repre-

senting the computation kernel in the modulo routing resource graph representing the CGRA

architecture. We design a customized and efficient graph minor search algorithm for our prob-

lem that employs aggressive pruning and acceleration strategies. We conduct extensive exper-
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imental evaluations of our approach and show that it achieves quality schedule with minimal

compilation time.
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